Sodium Blocking Induced by a Point Mutation at the C-Terminal End of the Pore Helix of the KAT1 Channel

Sodium Blocking Induced by a Point Mutation at the C-Terminal End of the Pore Helix of the KAT1... A plant hyperpolarization-activating K+ channel, KAT1, is highly selective for K+ over Na+ and is little affected by external Na+, which is crucial to take up K+ effectively in a Na+-containing environment. It has been shown that a mutation at the location (Thr256) preceding the selectivity signature sequence dramatically enhanced the sensitivity of the KAT1 channel to external Na+. We report here electrophysiological experiments for the mechanism of action of external Na+ on KAT1 channels. The Thr256 residue was substituted with either glutamine (Q) or glutamate (E). The wild-type channel was insensitive to external Na+. However, the activity of both mutant channels was significantly depressed by Na+ with apparent dissociation constants of 6.7 mm and 11.3 mm for T256Q and T256E, respectively. The instantaneous current-voltage relationships revealed distinct blocking mechanisms for these mutants. For T256Q a typical voltage-dependent fast blocking was shown. On the other hand, the blocking for the T256E mutant was voltage-independent at low Na+ concentrations and became voltage-dependent at higher concentrations. At extreme hyperpolarization the blocking was relieved significantly. These data strongly suggest that the mutation at the end of the pore helix rearranged the selectivity filter and allows Na+ to penetrate into the pore. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Sodium Blocking Induced by a Point Mutation at the C-Terminal End of the Pore Helix of the KAT1 Channel

Loading next page...
 
/lp/springer_journal/sodium-blocking-induced-by-a-point-mutation-at-the-c-terminal-end-of-ewE1vc0uLZ
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2001 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0019-2
Publisher site
See Article on Publisher Site

Abstract

A plant hyperpolarization-activating K+ channel, KAT1, is highly selective for K+ over Na+ and is little affected by external Na+, which is crucial to take up K+ effectively in a Na+-containing environment. It has been shown that a mutation at the location (Thr256) preceding the selectivity signature sequence dramatically enhanced the sensitivity of the KAT1 channel to external Na+. We report here electrophysiological experiments for the mechanism of action of external Na+ on KAT1 channels. The Thr256 residue was substituted with either glutamine (Q) or glutamate (E). The wild-type channel was insensitive to external Na+. However, the activity of both mutant channels was significantly depressed by Na+ with apparent dissociation constants of 6.7 mm and 11.3 mm for T256Q and T256E, respectively. The instantaneous current-voltage relationships revealed distinct blocking mechanisms for these mutants. For T256Q a typical voltage-dependent fast blocking was shown. On the other hand, the blocking for the T256E mutant was voltage-independent at low Na+ concentrations and became voltage-dependent at higher concentrations. At extreme hyperpolarization the blocking was relieved significantly. These data strongly suggest that the mutation at the end of the pore helix rearranged the selectivity filter and allows Na+ to penetrate into the pore.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off