Smooth Transition ARCH Models: Estimation and Testing

Smooth Transition ARCH Models: Estimation and Testing In this paper, we suggest an extension of the ARCH model, the smooth-transition autoregressive conditional heteroskedasticity (STARCH) model. STARCH models endogenously allow for time-varying shifts in the parameters of the conditional variance equation. The most general form of the model that we consider is a double smooth-transition model, the STAR-STARCH model, which permits not only the conditional variance, but also the mean, to be a function of a smooth-transition term. The threshold ARCH model, the Markov-ARCH model and the standard ARCH model are special cases of our STARCH model. We also develop Lagrange multiplier tests of the hypothesis that the smooth-transition term in the conditional variance is zero. We apply our STARCH model to excess Treasury bill returns. We find some evidence of a smooth transition in excess returns, but in contrast to previous studies, we find almost no evidence of volatility persistence once we allow for smooth transitions in the conditional variance. Thus, the apparent persistence in the conditional variance reported by many researchers could be a mere statistical artifact. We conduct in-sample tests comparing STARCH models to nested competitors; these suggest that STARCH models hold promise for improved predictions. Finally, we describe further extensions of the STARCH model and suggest issues in finance to which they might profitably be applied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Smooth Transition ARCH Models: Estimation and Testing

Loading next page...
 
/lp/springer_journal/smooth-transition-arch-models-estimation-and-testing-Z3DXLge6iM
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1023/A:1008396518930
Publisher site
See Article on Publisher Site

Abstract

In this paper, we suggest an extension of the ARCH model, the smooth-transition autoregressive conditional heteroskedasticity (STARCH) model. STARCH models endogenously allow for time-varying shifts in the parameters of the conditional variance equation. The most general form of the model that we consider is a double smooth-transition model, the STAR-STARCH model, which permits not only the conditional variance, but also the mean, to be a function of a smooth-transition term. The threshold ARCH model, the Markov-ARCH model and the standard ARCH model are special cases of our STARCH model. We also develop Lagrange multiplier tests of the hypothesis that the smooth-transition term in the conditional variance is zero. We apply our STARCH model to excess Treasury bill returns. We find some evidence of a smooth transition in excess returns, but in contrast to previous studies, we find almost no evidence of volatility persistence once we allow for smooth transitions in the conditional variance. Thus, the apparent persistence in the conditional variance reported by many researchers could be a mere statistical artifact. We conduct in-sample tests comparing STARCH models to nested competitors; these suggest that STARCH models hold promise for improved predictions. Finally, we describe further extensions of the STARCH model and suggest issues in finance to which they might profitably be applied.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Oct 8, 2004

References

  • On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks
    Glosten, L.R.; Jagannathan, R.; Runkle, D.E.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off