Smooth Transition ARCH Models: Estimation and Testing

Smooth Transition ARCH Models: Estimation and Testing In this paper, we suggest an extension of the ARCH model, the smooth-transition autoregressive conditional heteroskedasticity (STARCH) model. STARCH models endogenously allow for time-varying shifts in the parameters of the conditional variance equation. The most general form of the model that we consider is a double smooth-transition model, the STAR-STARCH model, which permits not only the conditional variance, but also the mean, to be a function of a smooth-transition term. The threshold ARCH model, the Markov-ARCH model and the standard ARCH model are special cases of our STARCH model. We also develop Lagrange multiplier tests of the hypothesis that the smooth-transition term in the conditional variance is zero. We apply our STARCH model to excess Treasury bill returns. We find some evidence of a smooth transition in excess returns, but in contrast to previous studies, we find almost no evidence of volatility persistence once we allow for smooth transitions in the conditional variance. Thus, the apparent persistence in the conditional variance reported by many researchers could be a mere statistical artifact. We conduct in-sample tests comparing STARCH models to nested competitors; these suggest that STARCH models hold promise for improved predictions. Finally, we describe further extensions of the STARCH model and suggest issues in finance to which they might profitably be applied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Smooth Transition ARCH Models: Estimation and Testing

Loading next page...
 
/lp/springer_journal/smooth-transition-arch-models-estimation-and-testing-Z3DXLge6iM
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1023/A:1008396518930
Publisher site
See Article on Publisher Site

Abstract

In this paper, we suggest an extension of the ARCH model, the smooth-transition autoregressive conditional heteroskedasticity (STARCH) model. STARCH models endogenously allow for time-varying shifts in the parameters of the conditional variance equation. The most general form of the model that we consider is a double smooth-transition model, the STAR-STARCH model, which permits not only the conditional variance, but also the mean, to be a function of a smooth-transition term. The threshold ARCH model, the Markov-ARCH model and the standard ARCH model are special cases of our STARCH model. We also develop Lagrange multiplier tests of the hypothesis that the smooth-transition term in the conditional variance is zero. We apply our STARCH model to excess Treasury bill returns. We find some evidence of a smooth transition in excess returns, but in contrast to previous studies, we find almost no evidence of volatility persistence once we allow for smooth transitions in the conditional variance. Thus, the apparent persistence in the conditional variance reported by many researchers could be a mere statistical artifact. We conduct in-sample tests comparing STARCH models to nested competitors; these suggest that STARCH models hold promise for improved predictions. Finally, we describe further extensions of the STARCH model and suggest issues in finance to which they might profitably be applied.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Oct 8, 2004

References

  • On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks
    Glosten, L.R.; Jagannathan, R.; Runkle, D.E.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off