Smooth at one end and rough at the other: influence of object texture on grasping behaviour

Smooth at one end and rough at the other: influence of object texture on grasping behaviour When picking up objects using a pinch grip, there are usually numerous places at which one could place the thumb and index finger. Yet, people seem to consistently place them at or close to the centre of mass (COM), presumably to minimize torque and therefore the required grip force. People also prefer to grasp objects by parallel surfaces and ones with higher friction coefficients (rough surfaces), to prevent the object from slipping when they lift it. Here, we examine the trade-off between friction and COM. Participants were asked to grasp and lift aluminium bars of which one end was polished and therefore smooth and the other was rough. Their finger positions were recorded to determine how they grasped the objects. The bars were oriented horizontally in the frontal plane, with the centre aligned with the participants’ body midline. The bars varied in the horizontal offset between the COM and the edge of the rough region. The offset could be 0, 1 or 2 cm. We expected participants to grasp closer to the rough area than the centre of the bar. Completely rough bars and completely smooth bars served as control conditions. The slipperiness of the surface that was grasped affected the height of the grasping points, indicating that participants adjusted their grasping behaviour to the slipperiness of the surface. However, the tendency to grasp closer to the rough area was minimal. This shows that the judged COM largely determines how an object is grasped. Friction has very limited influence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Smooth at one end and rough at the other: influence of object texture on grasping behaviour

Loading next page...
 
/lp/springer_journal/smooth-at-one-end-and-rough-at-the-other-influence-of-object-texture-Kjd4LVLkSv
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
D.O.I.
10.1007/s00221-017-5016-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial