SMC complexes orchestrate the mitotic chromatin interaction landscape

SMC complexes orchestrate the mitotic chromatin interaction landscape Chromatin is a very long DNA–protein complex that controls the expression and inheritance of the genetic information. Chromatin is stored within the nucleus in interphase and further compacted into chromosomes during mitosis. This process, known as chromosome condensation, is essential for faithful segregation of genomic DNA into daughter cells. Condensin and cohesin, members of the structural maintenance of chromosomes (SMC) family, are fundamental for chromosome architecture, both for establishment of chromatin structure in the interphase nucleus and for the formation of condensed chromosomes in mitosis. These ring-shaped SMC complexes are thought to regulate the interactions between DNA strands by topologically entrapping DNA. How this activity shapes chromosomes is not yet understood. Recent high throughput chromosome conformation capture studies revealed how chromatin is reorganized during the cell cycle and have started to explore the role of SMC complexes in mitotic chromatin architecture. Here, we summarize these findings and discuss the conserved nature of chromosome condensation in eukaryotes. We highlight the unexpected finding that condensin-dependent intra-chromosomal interactions in mitosis increase within a distinctive distance range that is characteristic for an organism, while longer and shorter-range interactions are suppressed. This reveals important molecular insight into chromosome architecture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Genetics Springer Journals

SMC complexes orchestrate the mitotic chromatin interaction landscape

Loading next page...
 
/lp/springer_journal/smc-complexes-orchestrate-the-mitotic-chromatin-interaction-landscape-rz8jdi0s0E
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Life Sciences; Microbial Genetics and Genomics; Microbiology; Biochemistry, general; Cell Biology; Plant Sciences; Proteomics
ISSN
0172-8083
eISSN
1432-0983
D.O.I.
10.1007/s00294-017-0755-y
Publisher site
See Article on Publisher Site

Abstract

Chromatin is a very long DNA–protein complex that controls the expression and inheritance of the genetic information. Chromatin is stored within the nucleus in interphase and further compacted into chromosomes during mitosis. This process, known as chromosome condensation, is essential for faithful segregation of genomic DNA into daughter cells. Condensin and cohesin, members of the structural maintenance of chromosomes (SMC) family, are fundamental for chromosome architecture, both for establishment of chromatin structure in the interphase nucleus and for the formation of condensed chromosomes in mitosis. These ring-shaped SMC complexes are thought to regulate the interactions between DNA strands by topologically entrapping DNA. How this activity shapes chromosomes is not yet understood. Recent high throughput chromosome conformation capture studies revealed how chromatin is reorganized during the cell cycle and have started to explore the role of SMC complexes in mitotic chromatin architecture. Here, we summarize these findings and discuss the conserved nature of chromosome condensation in eukaryotes. We highlight the unexpected finding that condensin-dependent intra-chromosomal interactions in mitosis increase within a distinctive distance range that is characteristic for an organism, while longer and shorter-range interactions are suppressed. This reveals important molecular insight into chromosome architecture.

Journal

Current GeneticsSpringer Journals

Published: Sep 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off