Small Synthetic Peptides Homologous to Segments of the First External Loop of Occludin Impair Tight Junction Resealing

Small Synthetic Peptides Homologous to Segments of the First External Loop of Occludin Impair... This study shows that resealing of opened tight junctions (TJs) is impaired by interaction with oligopeptides homologous to the external domain of chick occludin. The experiments were carried out with confluent A6 cell monolayers grown on collagen supports under stable transepithelial electrical resistance (TER). The monolayers were bathed on the apical side with a 75 mm KCl solution and on the basolateral side by NaCl-Ringer's solution. TJ opening was induced by basolateral Ca2+ removal and was characterized by a marked drop of TER. The reintroduction of Ca2+ triggered junction resealing as indicated by an elevation of TER to control values. Custom-made peptides SNYYGSGLSY (corresponding to the residues 100 to 109) and SNYYGSGLS (residues 100 to 108), homologous to segments of the first external loop of chick occludin molecule, impaired junction resealing when the peptides were included in the apical bathing fluid (concentrations in the range of 0.5 to 1.5 mg/ml). Peptide removal from the apical solution usually triggered a slow recovery of TER, indicating a slow recovery of the TJ seal. Changes in localization of ZO-1, a cytoplasmic protein that underlies the membrane at the TJs, were evaluated immunocytochemically following Ca2+ removal and reintroduction. The presence or absence of the oligopeptides showed no influence on the pattern of change of ZO-1 localization. These observations support the hypothesis that the TJ seal results from the interaction of specific homologous segments of occludin on the surface of adjacent cells. Additionally, our results show that small peptides homologous to segments of the occludin first external loop can be used as specific reagents to manipulate the permeability of tight junctions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Small Synthetic Peptides Homologous to Segments of the First External Loop of Occludin Impair Tight Junction Resealing

Loading next page...
 
/lp/springer_journal/small-synthetic-peptides-homologous-to-segments-of-the-first-external-YhJ2qjV1PE
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900518
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial