Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803

Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis... In the cyanobacterium Synechocystis sp. PCC 6803 five open reading frames (scpA–scpE) have been identified that code for single-helix proteins resembling helices I and III of chlorophyll a/b-binding (Cab) antenna proteins from higher plants. They have been named SCPs (small Cab-like proteins). Deletion of a single scp gene in a wild-type or in a photosystem I-less (PS I-less) strain has little effect. However, the effects of functional deletion of scpB or scpE were remarkable under conditions where chlorophyll availability was limited. When cells of a strain lacking PS I and chlL (coding for a polypeptide needed for light-independent protochlorophyllide reduction) were grown in darkness, the phycobilin and protochlorophyllide levels decreased upon deletion of scpB or scpE and the protoheme level was reduced in the strain lacking scpE. Addition of δ-aminolevulinic acid (ALA) in darkness drastically increased the level of Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester in the PS I-less/chlL −/scpE − strain, whereas PChlide accumulated in the PS I-less/chlL −/scpB − strain. In the PS I-less/chlL − control strain ALA supplementation did not lead to large changes in the levels of tetrapyrrole biosynthesis intermediates. We propose that ScpE and ScpB regulate tetrapyrrole biosynthesis as a function of pigment availability. This regulation occurs primarily at an early step of tetrapyrrole biosynthesis, prior to ALA. In view of the conserved nature of chlorophyll-binding sites in these proteins, it seems likely that regulation by SCPs occurs as a function of chlorophyll availability, with SCPs activating chlorophyll biosynthesis steps when they do not have pigments bound. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803

Loading next page...
 
/lp/springer_journal/small-cab-like-proteins-regulating-tetrapyrrole-biosynthesis-in-the-YnJxvRDDkM
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014900806905
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial