Slurry Erosion Wear Resistance and Impact-Induced Phase Transformation of Titanium Alloys

Slurry Erosion Wear Resistance and Impact-Induced Phase Transformation of Titanium Alloys Erosion wear resistance and impact-induced phase transformation of titanium alloys TA2 (pure Ti), TC4 (Ti–6Al–4V) and TC11 (Ti–6.5Al–3.5Mo–1.5Zr–0.3Si) were investigated using a slurry jet tester. The slurry erosion wear resistance of TA2 is comparable to that of 304 stainless steel, especially at the impingement angle 90°. Although TC4 and TC11 have higher hardness, TA2 possesses the best erosion wear resistance except TC11 at 15°. With the increasing erosion time, the eroded surface hardness of TC11 at the impingement angle 90° increases and then decreases, while the volume loss rate drops in the first 15 min, then increases until 30 min, and then slightly decreases again. With XRD characterization and SEM observation, erosion-induced phase transformation from metastable β-phase to α-phase is proved on the surface of titanium alloy TC11. And the thickness of visible phase transformation layer is about 10 μm. Phase transformation influences the erosive wear mechanism of titanium alloys. At the impingement angle of 30°, the material removal of TC4 and TC11 can be described as micro-plowing and lip extruding, while plowing mark is not a typical surface morphology of TA2, indicating a better work-harden ability. So, stabilizing β-phase can be an effective way to improve the erosion wear resistance of titanium alloys. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology Letters Springer Journals

Slurry Erosion Wear Resistance and Impact-Induced Phase Transformation of Titanium Alloys

Loading next page...
 
/lp/springer_journal/slurry-erosion-wear-resistance-and-impact-induced-phase-transformation-d48LA3lXSz
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
ISSN
1023-8883
eISSN
1573-2711
D.O.I.
10.1007/s11249-018-1015-0
Publisher site
See Article on Publisher Site

Abstract

Erosion wear resistance and impact-induced phase transformation of titanium alloys TA2 (pure Ti), TC4 (Ti–6Al–4V) and TC11 (Ti–6.5Al–3.5Mo–1.5Zr–0.3Si) were investigated using a slurry jet tester. The slurry erosion wear resistance of TA2 is comparable to that of 304 stainless steel, especially at the impingement angle 90°. Although TC4 and TC11 have higher hardness, TA2 possesses the best erosion wear resistance except TC11 at 15°. With the increasing erosion time, the eroded surface hardness of TC11 at the impingement angle 90° increases and then decreases, while the volume loss rate drops in the first 15 min, then increases until 30 min, and then slightly decreases again. With XRD characterization and SEM observation, erosion-induced phase transformation from metastable β-phase to α-phase is proved on the surface of titanium alloy TC11. And the thickness of visible phase transformation layer is about 10 μm. Phase transformation influences the erosive wear mechanism of titanium alloys. At the impingement angle of 30°, the material removal of TC4 and TC11 can be described as micro-plowing and lip extruding, while plowing mark is not a typical surface morphology of TA2, indicating a better work-harden ability. So, stabilizing β-phase can be an effective way to improve the erosion wear resistance of titanium alloys.

Journal

Tribology LettersSpringer Journals

Published: Apr 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off