SLS: One of the Modern Technologies of Laser Surface Treatment

SLS: One of the Modern Technologies of Laser Surface Treatment Photovoltaic cells are one way of achieving solar energy. One of the stages of their fabrication is the production of front electrode. The application of an unconventional method of selective laser sintering using the $$\hbox {CO}_{2 }$$ CO 2 laser for the fabrication of front electrode of silicon photovoltaic cell was a real challenge. The most notable research results yielded by the research indicate what should be the focus of further investigation. The main objective of the paper is to work out the guidelines to be applied to laser micromachining of the front electrode of the photovoltaic cell concerning the selection of parameters such as the laser beam and laser beam feed rate, which give the possibility to assure its proper quality and suitable operating properties (including also its electrical properties). The investigation results obtained should yield the precise assessment of the laser micromachining conditions for the fabrication of front electrode of photovoltaic cells to improve their quality by the minimization of the Ag–Si interface resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Thermophysics Springer Journals

SLS: One of the Modern Technologies of Laser Surface Treatment

Loading next page...
 
/lp/springer_journal/sls-one-of-the-modern-technologies-of-laser-surface-treatment-7v9LAJKtLY
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Physics; Condensed Matter Physics; Classical Mechanics; Industrial Chemistry/Chemical Engineering; Physical Chemistry
ISSN
0195-928X
eISSN
1572-9567
D.O.I.
10.1007/s10765-017-2263-1
Publisher site
See Article on Publisher Site

Abstract

Photovoltaic cells are one way of achieving solar energy. One of the stages of their fabrication is the production of front electrode. The application of an unconventional method of selective laser sintering using the $$\hbox {CO}_{2 }$$ CO 2 laser for the fabrication of front electrode of silicon photovoltaic cell was a real challenge. The most notable research results yielded by the research indicate what should be the focus of further investigation. The main objective of the paper is to work out the guidelines to be applied to laser micromachining of the front electrode of the photovoltaic cell concerning the selection of parameters such as the laser beam and laser beam feed rate, which give the possibility to assure its proper quality and suitable operating properties (including also its electrical properties). The investigation results obtained should yield the precise assessment of the laser micromachining conditions for the fabrication of front electrode of photovoltaic cells to improve their quality by the minimization of the Ag–Si interface resistance.

Journal

International Journal of ThermophysicsSpringer Journals

Published: Jul 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off