Slow Gating of Gap Junction Channels and Calmodulin

Slow Gating of Gap Junction Channels and Calmodulin Certain COOH-terminus mutants of connexin32 (Cx32) were previously shown to form channels with unusual transjuctional voltage (V j ) sensitivity when tested heterotypically in oocytes against Cx32 wild type. Junctional conductance (G j ) slowly increased by severalfold or decreases to nearly zero with V j positive or negative, respectively, at mutant side, and V j positive at mutant side reversed CO2-induced uncoupling. This suggested that the CO2-sensitive gate might be a V j -sensitive slow gate. Based on previous data for calmodulin (CaM) involvement in gap junction function, we have hypothesized that the slow gate could be a CaM-like pore plugging molecule (cork gating model). This study describes a similar behavior in heterotypic channels between Cx32 and each of four new Cx32 mutants modified in cytoplasmic-loop and/or COOH-terminus residues. The mutants are: ML/NN+3R/N, 3R/N, ML/NN and ML/EE; in these mutants, N or E replace M105 and L106, and N replace R215, R219 and R220. This study also reports that inhibition of CaM expression strongly reduces V j and CO2 sensitivities of two of the most effective mutants, suggesting a CaM role in slow and chemical gating. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Slow Gating of Gap Junction Channels and Calmodulin

Loading next page...
 
/lp/springer_journal/slow-gating-of-gap-junction-channels-and-calmodulin-Vu0JUdTORE
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010015
Publisher site
See Article on Publisher Site

Abstract

Certain COOH-terminus mutants of connexin32 (Cx32) were previously shown to form channels with unusual transjuctional voltage (V j ) sensitivity when tested heterotypically in oocytes against Cx32 wild type. Junctional conductance (G j ) slowly increased by severalfold or decreases to nearly zero with V j positive or negative, respectively, at mutant side, and V j positive at mutant side reversed CO2-induced uncoupling. This suggested that the CO2-sensitive gate might be a V j -sensitive slow gate. Based on previous data for calmodulin (CaM) involvement in gap junction function, we have hypothesized that the slow gate could be a CaM-like pore plugging molecule (cork gating model). This study describes a similar behavior in heterotypic channels between Cx32 and each of four new Cx32 mutants modified in cytoplasmic-loop and/or COOH-terminus residues. The mutants are: ML/NN+3R/N, 3R/N, ML/NN and ML/EE; in these mutants, N or E replace M105 and L106, and N replace R215, R219 and R220. This study also reports that inhibition of CaM expression strongly reduces V j and CO2 sensitivities of two of the most effective mutants, suggesting a CaM role in slow and chemical gating.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 18, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off