Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: An analytic solution

Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: An analytic... Present analysis is made for the laminar flow of Oldroyd-B fluid induced by a deforming sheet in the existence of transverse magnetic field. Flow model is constructed in the presence of slip boundary condition. The governing problem even after utilizing boundary layer approximations comprises of non-linear differential equation with the non-linear boundary condition. Such boundary condition for the no slip case is linear. Highly accurate analytic solutions for velocity distribution are derived by powerful homotopy analysis approach. Permissible values of the convergence control parameter are obtained by the so-called h-curves. The behavior of parameters on the solutions is shown graphically. In the light of numerical results, we predict that slip effect gives opposition to the momentum transport phenomenon. Moreover, the behaviors of relaxation and retardation time are qualitatively opposite. A comparative study of slip and no-slip cases is also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Slip effects on MHD boundary layer flow of Oldroyd-B fluid past a stretching sheet: An analytic solution

Loading next page...
 
/lp/springer_journal/slip-effects-on-mhd-boundary-layer-flow-of-oldroyd-b-fluid-past-a-JpunPTNa0k
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-017-0744-6
Publisher site
See Article on Publisher Site

Abstract

Present analysis is made for the laminar flow of Oldroyd-B fluid induced by a deforming sheet in the existence of transverse magnetic field. Flow model is constructed in the presence of slip boundary condition. The governing problem even after utilizing boundary layer approximations comprises of non-linear differential equation with the non-linear boundary condition. Such boundary condition for the no slip case is linear. Highly accurate analytic solutions for velocity distribution are derived by powerful homotopy analysis approach. Permissible values of the convergence control parameter are obtained by the so-called h-curves. The behavior of parameters on the solutions is shown graphically. In the light of numerical results, we predict that slip effect gives opposition to the momentum transport phenomenon. Moreover, the behaviors of relaxation and retardation time are qualitatively opposite. A comparative study of slip and no-slip cases is also discussed.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Mar 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off