Sliding-window top- k queries on uncertain streams

Sliding-window top- k queries on uncertain streams Recently, due to the imprecise nature of the data generated from a variety of streaming applications, such as sensor networks, query processing on uncertain data streams has become an important problem. However, all the existing works on uncertain data streams study unbounded streams. In this paper, we take the first step towards the important and challenging problem of answering sliding-window queries on uncertain data streams, with a focus on one of the most important types of queries—top- k queries. It is nontrivial to find an efficient solution for answering sliding-window top- k queries on uncertain data streams, because challenges not only stem from the strict space and time requirements of processing both arriving and expiring tuples in high-speed streams, but also rise from the exponential blowup in the number of possible worlds induced by the uncertain data model. In this paper, we design a unified framework for processing sliding-window top- k queries on uncertain streams. We show that all the existing top- k definitions in the literature can be plugged into our framework, resulting in several succinct synopses that use space much smaller than the window size, while they are also highly efficient in terms of processing time. We also extend our framework to answering multiple top- k queries. In addition to the theoretical space and time bounds that we prove for these synopses, we present a thorough experimental report to verify their practical efficiency on both synthetic and real data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Sliding-window top- k queries on uncertain streams

Loading next page...
 
/lp/springer_journal/sliding-window-top-k-queries-on-uncertain-streams-tjf53wLfRl
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-009-0171-0
Publisher site
See Article on Publisher Site

Abstract

Recently, due to the imprecise nature of the data generated from a variety of streaming applications, such as sensor networks, query processing on uncertain data streams has become an important problem. However, all the existing works on uncertain data streams study unbounded streams. In this paper, we take the first step towards the important and challenging problem of answering sliding-window queries on uncertain data streams, with a focus on one of the most important types of queries—top- k queries. It is nontrivial to find an efficient solution for answering sliding-window top- k queries on uncertain data streams, because challenges not only stem from the strict space and time requirements of processing both arriving and expiring tuples in high-speed streams, but also rise from the exponential blowup in the number of possible worlds induced by the uncertain data model. In this paper, we design a unified framework for processing sliding-window top- k queries on uncertain streams. We show that all the existing top- k definitions in the literature can be plugged into our framework, resulting in several succinct synopses that use space much smaller than the window size, while they are also highly efficient in terms of processing time. We also extend our framework to answering multiple top- k queries. In addition to the theoretical space and time bounds that we prove for these synopses, we present a thorough experimental report to verify their practical efficiency on both synthetic and real data.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2010

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off