Sliding Behaviour of Friction Material Against Cermet Coatings: Pin-on-Disc Study of the Running-in Stage

Sliding Behaviour of Friction Material Against Cermet Coatings: Pin-on-Disc Study of the... Running-in is the initial stage during which a tribological system reaches a steady-state condition. In this study, the running-in behaviour of a commercial brake friction material, pin-on-disc tested under dry sliding conditions, has been investigated to understand the role of different surface finishing of hard coatings. These coatings were deposited onto cast iron counterface discs and then mechanically polished to achieve set values of average roughness, R a, and roughness skewness, R sk. The tribological data were modelled using an exponential relation for the wear rate, according to a literature approach. The model parameters were related to the above-mentioned disc surface roughness parameters. The results provided indications on the wear mechanisms acting during the sliding action. Furthermore, these mechanisms were correlated with the formation of the friction layers on the pins and on the disc wear tracks. Of particular relevance is the finding that a negatively skewed surface roughness is fundamental to achieve the best running-in performances. The beneficial effects, coming from this surface treatment, are derived from the reduction in abrasion and from the improved formation dynamics of the friction layer, with particular regard to those parts (secondary plateaus) made of compacted wear debris. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tribology Letters Springer Journals

Sliding Behaviour of Friction Material Against Cermet Coatings: Pin-on-Disc Study of the Running-in Stage

Loading next page...
 
/lp/springer_journal/sliding-behaviour-of-friction-material-against-cermet-coatings-pin-on-XehTttSHKS
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Tribology, Corrosion and Coatings; Surfaces and Interfaces, Thin Films; Theoretical and Applied Mechanics; Physical Chemistry; Nanotechnology
ISSN
1023-8883
eISSN
1573-2711
D.O.I.
10.1007/s11249-018-1004-3
Publisher site
See Article on Publisher Site

Abstract

Running-in is the initial stage during which a tribological system reaches a steady-state condition. In this study, the running-in behaviour of a commercial brake friction material, pin-on-disc tested under dry sliding conditions, has been investigated to understand the role of different surface finishing of hard coatings. These coatings were deposited onto cast iron counterface discs and then mechanically polished to achieve set values of average roughness, R a, and roughness skewness, R sk. The tribological data were modelled using an exponential relation for the wear rate, according to a literature approach. The model parameters were related to the above-mentioned disc surface roughness parameters. The results provided indications on the wear mechanisms acting during the sliding action. Furthermore, these mechanisms were correlated with the formation of the friction layers on the pins and on the disc wear tracks. Of particular relevance is the finding that a negatively skewed surface roughness is fundamental to achieve the best running-in performances. The beneficial effects, coming from this surface treatment, are derived from the reduction in abrasion and from the improved formation dynamics of the friction layer, with particular regard to those parts (secondary plateaus) made of compacted wear debris.

Journal

Tribology LettersSpringer Journals

Published: Feb 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off