SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors

SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of... Large arrays of cryogenic sensors for various imaging applications ranging across x-ray, gamma-ray, cosmic microwave background, mm/sub-mm, as well as particle detection increasingly rely on superconducting microresonators for high multiplexing factors. These microresonators take the form of microwave SQUIDs that couple to transition-edge sensors or microwave kinetic inductance detectors. In principle, such arrays can be read out with vastly scalable software-defined radio using suitable FPGAs, ADCs and DACs. In this work, we share plans and show initial results for SLAC Microresonator Radio Frequency (SMuRF) electronics, a next-generation control and readout system for superconducting microresonators. SMuRF electronics are unique in their implementation of specialized algorithms for closed-loop tone tracking, which consists of fast feedback and feedforward to each resonator’s excitation parameters based on transmission measurements. Closed-loop tone tracking enables improved system linearity, a significant increase in sensor count per readout line, and the possibility of overcoupled resonator designs for enhanced dynamic range. Low-bandwidth prototype electronics were used to demonstrate closed-loop tone tracking on twelve 300-kHz-wide microwave SQUID resonators, spaced at $$\sim $$ ∼  6 MHz with center frequencies $$\sim $$ ∼  5–6 GHz. We achieve multi-kHz tracking bandwidth and demonstrate that the noise floor of the electronics is subdominant to the noise intrinsic in the multiplexer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Low Temperature Physics Springer Journals

SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors

Loading next page...
 
/lp/springer_journal/slac-microresonator-radio-frequency-smurf-electronics-for-read-out-of-SmD8nsA8Ix
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Characterization and Evaluation of Materials; Magnetism, Magnetic Materials
ISSN
0022-2291
eISSN
1573-7357
D.O.I.
10.1007/s10909-018-1981-5
Publisher site
See Article on Publisher Site

Abstract

Large arrays of cryogenic sensors for various imaging applications ranging across x-ray, gamma-ray, cosmic microwave background, mm/sub-mm, as well as particle detection increasingly rely on superconducting microresonators for high multiplexing factors. These microresonators take the form of microwave SQUIDs that couple to transition-edge sensors or microwave kinetic inductance detectors. In principle, such arrays can be read out with vastly scalable software-defined radio using suitable FPGAs, ADCs and DACs. In this work, we share plans and show initial results for SLAC Microresonator Radio Frequency (SMuRF) electronics, a next-generation control and readout system for superconducting microresonators. SMuRF electronics are unique in their implementation of specialized algorithms for closed-loop tone tracking, which consists of fast feedback and feedforward to each resonator’s excitation parameters based on transmission measurements. Closed-loop tone tracking enables improved system linearity, a significant increase in sensor count per readout line, and the possibility of overcoupled resonator designs for enhanced dynamic range. Low-bandwidth prototype electronics were used to demonstrate closed-loop tone tracking on twelve 300-kHz-wide microwave SQUID resonators, spaced at $$\sim $$ ∼  6 MHz with center frequencies $$\sim $$ ∼  5–6 GHz. We achieve multi-kHz tracking bandwidth and demonstrate that the noise floor of the electronics is subdominant to the noise intrinsic in the multiplexer.

Journal

Journal of Low Temperature PhysicsSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off