Skyframe: a framework for skyline query processing in peer-to-peer systems

Skyframe: a framework for skyline query processing in peer-to-peer systems This paper looks at the processing of skyline queries on peer-to-peer (P2P) networks. We propose Skyframe, a framework for efficient skyline query processing in P2P systems, which addresses the challenges of quick response time, low network communication cost and query load balancing among peers. Skyframe consists of two querying methods: one is optimized for network communication while the other focuses on query response time. These methods are different in the way in which the query search space is defined. In particular, the first method uses a high dominating point that has a large dominating region to prune the search space to achieve a low cost in network communication. On the other hand, the second method relaxes the search space in order to allow parallel query processing to speed up query response. Skyframe achieves query load balancing by both query load conscious data space splitting/merging during the join/departure of nodes and dynamic load migration. We further show how to apply Skyframe to both the P2P systems supporting multi-dimensional indexing and the P2P systems supporting single-dimensional indexing. Finally, we have conducted extensive experiments on both real and synthetic data sets over two existing P2P systems: CAN (Ratnasamy in A scalable content-addressable network. In: Proceedings of SIGCOMM Conference, pp. 161–172, 2001) and BATON (Jagadish et al. in A balanced tree structure for peer-to-peer networks. In: Proceedings of VLDB Conference, pp. 661–672, 2005) to evaluate the effectiveness and scalability of Skyframe. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Skyframe: a framework for skyline query processing in peer-to-peer systems

Loading next page...
 
/lp/springer_journal/skyframe-a-framework-for-skyline-query-processing-in-peer-to-peer-bvPfhdM2dV
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-008-0104-3
Publisher site
See Article on Publisher Site

Abstract

This paper looks at the processing of skyline queries on peer-to-peer (P2P) networks. We propose Skyframe, a framework for efficient skyline query processing in P2P systems, which addresses the challenges of quick response time, low network communication cost and query load balancing among peers. Skyframe consists of two querying methods: one is optimized for network communication while the other focuses on query response time. These methods are different in the way in which the query search space is defined. In particular, the first method uses a high dominating point that has a large dominating region to prune the search space to achieve a low cost in network communication. On the other hand, the second method relaxes the search space in order to allow parallel query processing to speed up query response. Skyframe achieves query load balancing by both query load conscious data space splitting/merging during the join/departure of nodes and dynamic load migration. We further show how to apply Skyframe to both the P2P systems supporting multi-dimensional indexing and the P2P systems supporting single-dimensional indexing. Finally, we have conducted extensive experiments on both real and synthetic data sets over two existing P2P systems: CAN (Ratnasamy in A scalable content-addressable network. In: Proceedings of SIGCOMM Conference, pp. 161–172, 2001) and BATON (Jagadish et al. in A balanced tree structure for peer-to-peer networks. In: Proceedings of VLDB Conference, pp. 661–672, 2005) to evaluate the effectiveness and scalability of Skyframe.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2009

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off