Skeletal Muscle Type Comparison of Subsarcolemmal Mitochondrial Membrane Phospholipid Fatty Acid Composition in Rat

Skeletal Muscle Type Comparison of Subsarcolemmal Mitochondrial Membrane Phospholipid Fatty Acid... The phospholipid composition of membranes can influence the physiological functioning of the cell or subcellular organelle. This association has been previously demonstrated in skeletal muscle, where cellular or subcellular membrane, specifically mitochondria, phospholipid composition is linked to muscle function. However, these observations are based on whole mixed skeletal muscle analysis, with little information on skeletal muscles of differing fiber-type compositions. These past approaches that used mixed muscle may have misidentified outcomes or masked differences. Thus, the purpose of this study was to compare the phospholipid fatty acid composition of subsarcolemmal (SS) mitochondria isolated from slow-twitch postural (soleus), fast-twitch highly oxidative glycolytic locomotory (red gastrocnemius), and fast-twitch oxidative glycolytic locomotory (plantaris) skeletal muscles. The main findings of the study demonstrated unique differences between SS mitochondrial membranes from postural soleus compared to the other locomotory skeletal muscles examined, specifically lower percentage mole fraction of phosphatidylcholine (PC) and significantly higher percentage mole fraction of saturated fatty acids (SFA) and lower n6 polyunsaturated fatty acids (PUFA), resulting in a lower unsaturation index. We also found that although there was no difference in the percentage mole fraction of cardiolipin (CL) between skeletal muscle types examined, CL of soleus mitochondrial membranes were approximately twofold more SFA and approximately two-thirds less PUFA, resulting in a 20–30% lower unsaturation and peroxidation indices. Thus, the results of this study indicate unique membrane lipid composition of mitochondria isolated from different skeletal muscle types, a potential consequence of their respective duty cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Skeletal Muscle Type Comparison of Subsarcolemmal Mitochondrial Membrane Phospholipid Fatty Acid Composition in Rat

Loading next page...
 
/lp/springer_journal/skeletal-muscle-type-comparison-of-subsarcolemmal-mitochondrial-Is0SgupLrK
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9247-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial