Sizes of pentagonal clusters in fullerenes

Sizes of pentagonal clusters in fullerenes Stability and chemistry, both exohedral and endohedral, of fullerenes are critically dependent on the distribution of their obligatory 12 pentagonal faces. It is well known that there are infinitely many IPR-fullerenes and that the pentagons in these fullerenes can be at an arbitrarily large distance from each other. IPR-fullerenes can be described as fullerenes in which each connected cluster of pentagons has size 1. In this paper we study the combinations of cluster sizes that can occur in fullerenes and whether the clusters can be at an arbitrarily large distance from each other. For each possible partition of the number 12, we are able to decide whether the partition describes the sizes of pentagon clusters in a possible fullerene, and state whether the different clusters can be at an arbitrarily large distance from each other. We will prove that all partitions with largest cluster of size 5 or less can occur in an infinite number of fullerenes with the clusters at an arbitrarily large distance of each other, that 9 partitions occur in only a finite number of fullerene isomers and that 15 partitions do not occur at all in fullerenes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Mathematical Chemistry Springer Journals
Loading next page...
 
/lp/springer_journal/sizes-of-pentagonal-clusters-in-fullerenes-pkVm3f6T8c
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Chemistry; Physical Chemistry; Theoretical and Computational Chemistry; Math. Applications in Chemistry
ISSN
0259-9791
eISSN
1572-8897
D.O.I.
10.1007/s10910-017-0754-8
Publisher site
See Article on Publisher Site

Abstract

Stability and chemistry, both exohedral and endohedral, of fullerenes are critically dependent on the distribution of their obligatory 12 pentagonal faces. It is well known that there are infinitely many IPR-fullerenes and that the pentagons in these fullerenes can be at an arbitrarily large distance from each other. IPR-fullerenes can be described as fullerenes in which each connected cluster of pentagons has size 1. In this paper we study the combinations of cluster sizes that can occur in fullerenes and whether the clusters can be at an arbitrarily large distance from each other. For each possible partition of the number 12, we are able to decide whether the partition describes the sizes of pentagon clusters in a possible fullerene, and state whether the different clusters can be at an arbitrarily large distance from each other. We will prove that all partitions with largest cluster of size 5 or less can occur in an infinite number of fullerenes with the clusters at an arbitrarily large distance of each other, that 9 partitions occur in only a finite number of fullerene isomers and that 15 partitions do not occur at all in fullerenes.

Journal

Journal of Mathematical ChemistrySpringer Journals

Published: May 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off