Site specific cytosine methylation in rice nonautonomous transposable element nDart

Site specific cytosine methylation in rice nonautonomous transposable element nDart The mobile nonautonomous element nDart, which is active in intact rice plants, exhibits locus specific transposition. Due to the high homogeneity of nDart elements, the locus specificity of nDart transposition might be controlled by factors other than genetic differences. In this study, we elucidated the regulation of the locus specificity of nDart transposition. The difference of transpositional activities in 10 nDart elements among rice varieties exhibiting nDart transposition was clearly correlated with the methylation state of nDart elements. Both hyper- and hypo-methylated nDart elements were inactive, while site specific methylation in both subterminal regions was identified in active nDart loci. The specific methylation sites contain the pentamer motif GCC/ACG. The repeated motifs in the subterminal region of nDart elements may contribute to the stable secondary structure of nDart elements with low free energy. Our results suggested that site specific cytosine methylation may loosen the stable secondary structure of the nDart element to allow it to bind TPase, which then perform the excision of nDart elements from genomic loci. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Site specific cytosine methylation in rice nonautonomous transposable element nDart

Loading next page...
 
/lp/springer_journal/site-specific-cytosine-methylation-in-rice-nonautonomous-transposable-0y92e8q0HA
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9335-3
Publisher site
See Article on Publisher Site

Abstract

The mobile nonautonomous element nDart, which is active in intact rice plants, exhibits locus specific transposition. Due to the high homogeneity of nDart elements, the locus specificity of nDart transposition might be controlled by factors other than genetic differences. In this study, we elucidated the regulation of the locus specificity of nDart transposition. The difference of transpositional activities in 10 nDart elements among rice varieties exhibiting nDart transposition was clearly correlated with the methylation state of nDart elements. Both hyper- and hypo-methylated nDart elements were inactive, while site specific methylation in both subterminal regions was identified in active nDart loci. The specific methylation sites contain the pentamer motif GCC/ACG. The repeated motifs in the subterminal region of nDart elements may contribute to the stable secondary structure of nDart elements with low free energy. Our results suggested that site specific cytosine methylation may loosen the stable secondary structure of the nDart element to allow it to bind TPase, which then perform the excision of nDart elements from genomic loci.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 13, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off