Single-step digital backpropagation for nonlinearity mitigation

Single-step digital backpropagation for nonlinearity mitigation Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier method (SSFM), the ESSFM for dual-polarization signals is introduced. Computational complexity, latency, and power consumption of DBP based on the SSFM and ESSFM algorithms are estimated and compared. Effective low-complexity nonlinearity mitigation in a 112 Gb/s polarization-multiplexed QPSK system is experimentally demonstrated by using a single-step DBP based on the ESSFM. The proposed DBP implementation requires only a single step of the ESSFM algorithm to achieve a transmission distance of 3200 km over a dispersion-unmanaged link. In comparison, a conventional DBP implementation requires 20 steps of the SSFM algorithm to achieve the same performance. An analysis of the computational complexity and structure of the two algorithms reveals that the overall complexity and power consumption of DBP are reduced by a factor of 16 with respect to a conventional implementation, while the computation time is reduced by a factor of 20. Similar complexity reductions can be obtained at longer distances if higher error probabilities are acceptable. The results indicate that the proposed algorithm enables a practical and effective implementation of DBP in real-time optical receivers, with only a moderate increase in the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for bulk dispersion compensation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Single-step digital backpropagation for nonlinearity mitigation

Loading next page...
 
/lp/springer_journal/single-step-digital-backpropagation-for-nonlinearity-mitigation-IoejOyaKdX
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-015-0586-z
Publisher site
See Article on Publisher Site

Abstract

Nonlinearity mitigation based on the enhanced split-step Fourier method (ESSFM) for the implementation of low-complexity digital backpropagation (DBP) is investigated and experimentally demonstrated. After reviewing the main computational aspects of DBP and of the conventional split-step Fourier method (SSFM), the ESSFM for dual-polarization signals is introduced. Computational complexity, latency, and power consumption of DBP based on the SSFM and ESSFM algorithms are estimated and compared. Effective low-complexity nonlinearity mitigation in a 112 Gb/s polarization-multiplexed QPSK system is experimentally demonstrated by using a single-step DBP based on the ESSFM. The proposed DBP implementation requires only a single step of the ESSFM algorithm to achieve a transmission distance of 3200 km over a dispersion-unmanaged link. In comparison, a conventional DBP implementation requires 20 steps of the SSFM algorithm to achieve the same performance. An analysis of the computational complexity and structure of the two algorithms reveals that the overall complexity and power consumption of DBP are reduced by a factor of 16 with respect to a conventional implementation, while the computation time is reduced by a factor of 20. Similar complexity reductions can be obtained at longer distances if higher error probabilities are acceptable. The results indicate that the proposed algorithm enables a practical and effective implementation of DBP in real-time optical receivers, with only a moderate increase in the computational complexity, power consumption, and latency with respect to a simple feed-forward equalizer for bulk dispersion compensation.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Dec 9, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off