Single sample per person face recognition with KPCANet and a weighted voting scheme

Single sample per person face recognition with KPCANet and a weighted voting scheme Most current methods of facial recognition rely on the condition of having multiple samples per person available for feature extraction. In practical applications, however, only one sample may be available for each person to train a model with. As a result, many of the traditional methods fall short, leaving the challenge of facial recognition greater than ever. To deal with this challenge, this study addresses a face recognition algorithm based on a kernel principal component analysis network (KPCANet) and then proposes a weighted voting method. First, the aligned face image is partitioned into several non-overlapping patches to form the training set. Next, a KPCANet is used to obtain filters and feature banks. Finally, the identification of the unlabeled probe occurs through the application of the weighted voting method. Based on several widely used face datasets, the results of the experiments demonstrate the superiority of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Signal, Image and Video Processing" Springer Journals

Single sample per person face recognition with KPCANet and a weighted voting scheme

Loading next page...
 
/lp/springer_journal/single-sample-per-person-face-recognition-with-kpcanet-and-a-weighted-Yqql2EHPvV
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Signal,Image and Speech Processing; Image Processing and Computer Vision; Computer Imaging, Vision, Pattern Recognition and Graphics; Multimedia Information Systems
ISSN
1863-1703
eISSN
1863-1711
D.O.I.
10.1007/s11760-017-1077-8
Publisher site
See Article on Publisher Site

Abstract

Most current methods of facial recognition rely on the condition of having multiple samples per person available for feature extraction. In practical applications, however, only one sample may be available for each person to train a model with. As a result, many of the traditional methods fall short, leaving the challenge of facial recognition greater than ever. To deal with this challenge, this study addresses a face recognition algorithm based on a kernel principal component analysis network (KPCANet) and then proposes a weighted voting method. First, the aligned face image is partitioned into several non-overlapping patches to form the training set. Next, a KPCANet is used to obtain filters and feature banks. Finally, the identification of the unlabeled probe occurs through the application of the weighted voting method. Based on several widely used face datasets, the results of the experiments demonstrate the superiority of the proposed method.

Journal

"Signal, Image and Video Processing"Springer Journals

Published: Mar 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off