Single sample per person face recognition with KPCANet and a weighted voting scheme

Single sample per person face recognition with KPCANet and a weighted voting scheme Most current methods of facial recognition rely on the condition of having multiple samples per person available for feature extraction. In practical applications, however, only one sample may be available for each person to train a model with. As a result, many of the traditional methods fall short, leaving the challenge of facial recognition greater than ever. To deal with this challenge, this study addresses a face recognition algorithm based on a kernel principal component analysis network (KPCANet) and then proposes a weighted voting method. First, the aligned face image is partitioned into several non-overlapping patches to form the training set. Next, a KPCANet is used to obtain filters and feature banks. Finally, the identification of the unlabeled probe occurs through the application of the weighted voting method. Based on several widely used face datasets, the results of the experiments demonstrate the superiority of the proposed method. "Signal, Image and Video Processing" Springer Journals

Single sample per person face recognition with KPCANet and a weighted voting scheme

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Signal,Image and Speech Processing; Image Processing and Computer Vision; Computer Imaging, Vision, Pattern Recognition and Graphics; Multimedia Information Systems
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial