Single-nucleotide polymorphisms and reading frame shifts in RNA2 recombinant regions of tobacco rattle virus isolates Slu24 and Deb57

Single-nucleotide polymorphisms and reading frame shifts in RNA2 recombinant regions of tobacco... Two previously sequenced tobacco rattle virus (TRV) isolates, Slu24 and Deb57, from Polish potato fields have recombinant RNA2 species. The 3’-proximal region of the Slu24 RNA2 is derived from the 3’ terminus of its supporting RNA1, while that of the Deb57 RNA2 is derived from the 3’ terminus of the unrelated RNA1 from the isolate SYM or PpK20. Gene structure annotation revealed open reading frames encoding truncated 16-kDa proteins in the recombinant regions of the RNA2 of Deb57 and Slu24. Reading frame shifts, single nucleotide substitutions and deletions occurred during recombination, including shifts from a stop codon or replacements of an internal stop codon. In the recombinant region of the Deb57 RNA2, the first reading frameshift event starts from the AUG start codon of the truncated 16-kDa protein. The second frameshift event, caused by a single nucleotide deletion upstream of the stop codon, leads to the splitting of the stop codon into two amino acid codons and the continuation of translation. In addition, a U-to-A substitution changes a potential internal stop codon UAA, which is caused by recombination-related frame shifts, into the codon AAA, encoding lysine. The replacement of this internal stop codon with an amino acid codon prevented the premature translation termination of the truncated 16-kDa protein. These recombination-related reading frame shifts are the driving force underlying the major differences in the translated amino acids, consequently leading to their translation into distinct polypeptides. Conversely, single nucleotide substitutions in the recombinant regions of the RNA2 of Deb57 or Slu24 resulted in only minor changes in the translated amino acids. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Single-nucleotide polymorphisms and reading frame shifts in RNA2 recombinant regions of tobacco rattle virus isolates Slu24 and Deb57

Loading next page...
 
/lp/springer_journal/single-nucleotide-polymorphisms-and-reading-frame-shifts-in-rna2-EoiTPcdVii
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-014-2128-x
Publisher site
See Article on Publisher Site

Abstract

Two previously sequenced tobacco rattle virus (TRV) isolates, Slu24 and Deb57, from Polish potato fields have recombinant RNA2 species. The 3’-proximal region of the Slu24 RNA2 is derived from the 3’ terminus of its supporting RNA1, while that of the Deb57 RNA2 is derived from the 3’ terminus of the unrelated RNA1 from the isolate SYM or PpK20. Gene structure annotation revealed open reading frames encoding truncated 16-kDa proteins in the recombinant regions of the RNA2 of Deb57 and Slu24. Reading frame shifts, single nucleotide substitutions and deletions occurred during recombination, including shifts from a stop codon or replacements of an internal stop codon. In the recombinant region of the Deb57 RNA2, the first reading frameshift event starts from the AUG start codon of the truncated 16-kDa protein. The second frameshift event, caused by a single nucleotide deletion upstream of the stop codon, leads to the splitting of the stop codon into two amino acid codons and the continuation of translation. In addition, a U-to-A substitution changes a potential internal stop codon UAA, which is caused by recombination-related frame shifts, into the codon AAA, encoding lysine. The replacement of this internal stop codon with an amino acid codon prevented the premature translation termination of the truncated 16-kDa protein. These recombination-related reading frame shifts are the driving force underlying the major differences in the translated amino acids, consequently leading to their translation into distinct polypeptides. Conversely, single nucleotide substitutions in the recombinant regions of the RNA2 of Deb57 or Slu24 resulted in only minor changes in the translated amino acids.

Journal

Archives of VirologySpringer Journals

Published: Nov 1, 2014

References

  • RNA2 of TRV SYM breaks the rules for tobravirus genome structure
    Ashfaq, M; McGavin, W; Macfarlane, SA
  • Complete genomic sequence of a Tobacco rattle virus isolate from Michigan-grown potatoes
    Crosslin, JM; Hamm, PB; Kirk, WW; Hammond, RW

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off