Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes

Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes Polymorphic markers at bovine gene loci facilitate the integration of cattle genetic maps with those of humans and mice. To this end, 31 single nucleotide polymorphism (SNP) markers were developed for seven bovine chemokine genes. Loci were amplified from bovine genomic DNA by the polymerase chain reaction, and candidate amplicons were sequenced to determine their identity. Amplified loci from 24 founding parents and select progeny from a beef cattle reference population were sequenced and analyzed for SNPs. SNP haplotype alleles were determined by examining segregation patterns and used to establish the locus position on the bovine linkage map. Loci for growth-related proteins (GRO3, GRO1, and GROX) were clustered with the related CXC chemokine genes, interleukin (IL) 8, and epithelial cell inflammatory protein 1, at 84 cM from the centromeric end of the bovine chromosome (BTA) 6 linkage group. Bovine loci for a cluster of IL8 receptors, a stromal cell-derived factor 1, interferon-γ, and tumor necrosis factor-α were mapped at 90, 55, 59, and 34 cM, respectively, from the centromeric ends of the BTA 2, 28, 5, and 23 linkage groups. The positions of these bovine loci were compared with those of orthologous loci on the human map to refine the boundaries of conserved synteny. These seven loci provide examples of SNP development in which the efficiency was largely dependent on the availability of bovine genomic or cDNA sequence. The polymorphic nature of these SNP haplotype markers suggests that they will be useful for mapping complex traits in cattle, such as resistance to infectious disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes

Loading next page...
1
 
/lp/springer_journal/single-nucleotide-polymorphism-snp-discovery-and-linkage-mapping-of-jdIdC8FHVi

References (35)

Publisher
Springer Journals
Copyright
Copyright © 1999 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
DOI
10.1007/s003359901162
Publisher site
See Article on Publisher Site

Abstract

Polymorphic markers at bovine gene loci facilitate the integration of cattle genetic maps with those of humans and mice. To this end, 31 single nucleotide polymorphism (SNP) markers were developed for seven bovine chemokine genes. Loci were amplified from bovine genomic DNA by the polymerase chain reaction, and candidate amplicons were sequenced to determine their identity. Amplified loci from 24 founding parents and select progeny from a beef cattle reference population were sequenced and analyzed for SNPs. SNP haplotype alleles were determined by examining segregation patterns and used to establish the locus position on the bovine linkage map. Loci for growth-related proteins (GRO3, GRO1, and GROX) were clustered with the related CXC chemokine genes, interleukin (IL) 8, and epithelial cell inflammatory protein 1, at 84 cM from the centromeric end of the bovine chromosome (BTA) 6 linkage group. Bovine loci for a cluster of IL8 receptors, a stromal cell-derived factor 1, interferon-γ, and tumor necrosis factor-α were mapped at 90, 55, 59, and 34 cM, respectively, from the centromeric ends of the BTA 2, 28, 5, and 23 linkage groups. The positions of these bovine loci were compared with those of orthologous loci on the human map to refine the boundaries of conserved synteny. These seven loci provide examples of SNP development in which the efficiency was largely dependent on the availability of bovine genomic or cDNA sequence. The polymorphic nature of these SNP haplotype markers suggests that they will be useful for mapping complex traits in cattle, such as resistance to infectious disease.

Journal

Mammalian GenomeSpringer Journals

Published: Nov 1, 1999

There are no references for this article.