Single machine scheduling with job delivery to multiple customers

Single machine scheduling with job delivery to multiple customers We investigate a single machine scheduling problem with job delivery to multiple customers. In this problem, each job needs to be processed on the single machine, and then delivered by a single vehicle to its customer, where the job has a physical size representing the fraction of space it occupies on the vehicle. The vehicle delivers a shipment from the machine to a customer and has to return back to the machine for delivering the next shipment. It takes different constant time for the round trips between the machine and the different customers. The goal is to minimize the makespan, by that time all the jobs are processed and delivered to their respective customers, and the vehicle returns back to the machine. We propose a 2-approximation algorithm for the general case; when there are only two customers, we present an improved 5/3-approximation algorithm. The design and performance analysis of these two algorithms integrate several known results and techniques for the single machine scheduling problem, the bin-packing problem, and the knapsack problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scheduling Springer Journals

Single machine scheduling with job delivery to multiple customers

Loading next page...
 
/lp/springer_journal/single-machine-scheduling-with-job-delivery-to-multiple-customers-YgbwGmXk3i
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Business and Management; Operations Research/Decision Theory; Calculus of Variations and Optimal Control; Optimization; Optimization; Artificial Intelligence (incl. Robotics); Supply Chain Management
ISSN
1094-6136
eISSN
1099-1425
D.O.I.
10.1007/s10951-017-0508-2
Publisher site
See Article on Publisher Site

Abstract

We investigate a single machine scheduling problem with job delivery to multiple customers. In this problem, each job needs to be processed on the single machine, and then delivered by a single vehicle to its customer, where the job has a physical size representing the fraction of space it occupies on the vehicle. The vehicle delivers a shipment from the machine to a customer and has to return back to the machine for delivering the next shipment. It takes different constant time for the round trips between the machine and the different customers. The goal is to minimize the makespan, by that time all the jobs are processed and delivered to their respective customers, and the vehicle returns back to the machine. We propose a 2-approximation algorithm for the general case; when there are only two customers, we present an improved 5/3-approximation algorithm. The design and performance analysis of these two algorithms integrate several known results and techniques for the single machine scheduling problem, the bin-packing problem, and the knapsack problem.

Journal

Journal of SchedulingSpringer Journals

Published: Feb 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off