Single image fog and haze removal based on self-adaptive guided image filter and color channel information of sky region

Single image fog and haze removal based on self-adaptive guided image filter and color channel... In this paper, we report an effective algorithm for removing both fog and haze from a single image. Existing algorithms based on atmospheric degeneration model generally lead to non-definite solutions for the haze and thick fog images, though they are very efficient for thin fog images. In general, as the algorithms based on vision enhancement cannot automatically adjust weight coefficient for the different structure images, the excessive or inadequate enhancement may emerge. In this paper an original degradation image is primarily segmented into the sky and non-sky regions, and then the main boundaries of non-sky region are extracted using L 0 smoothing filter. So our vision enhancement algorithm automatically adjusts weight coefficient according to various structure images. At the stage of vision enhancement, guided image filter famous for its excellent boundary preservation is adopted. As for haze image, the color channel information scattered by haze particles can be obtained in the sky region to make an effective color correction. Both the subjective and objective evaluations of experimental results demonstrate that the proposed algorithm has more outstanding recovery effect for haze and thick fog images. Moreover, the proposed algorithm can judge fog or haze image, which is a by-product of this research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Single image fog and haze removal based on self-adaptive guided image filter and color channel information of sky region

Loading next page...
 
/lp/springer_journal/single-image-fog-and-haze-removal-based-on-self-adaptive-guided-image-FupzcJJlpw
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4973-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, we report an effective algorithm for removing both fog and haze from a single image. Existing algorithms based on atmospheric degeneration model generally lead to non-definite solutions for the haze and thick fog images, though they are very efficient for thin fog images. In general, as the algorithms based on vision enhancement cannot automatically adjust weight coefficient for the different structure images, the excessive or inadequate enhancement may emerge. In this paper an original degradation image is primarily segmented into the sky and non-sky regions, and then the main boundaries of non-sky region are extracted using L 0 smoothing filter. So our vision enhancement algorithm automatically adjusts weight coefficient according to various structure images. At the stage of vision enhancement, guided image filter famous for its excellent boundary preservation is adopted. As for haze image, the color channel information scattered by haze particles can be obtained in the sky region to make an effective color correction. Both the subjective and objective evaluations of experimental results demonstrate that the proposed algorithm has more outstanding recovery effect for haze and thick fog images. Moreover, the proposed algorithm can judge fog or haze image, which is a by-product of this research.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jul 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off