Single Cysteines in the Extracellular and Transmembrane Regions Modulate Pannexin 1 Channel Function

Single Cysteines in the Extracellular and Transmembrane Regions Modulate Pannexin 1 Channel Function Pannexins form high-conductance ion channels in the membranes of many vertebrate cells. Functionally, they have been associated with multiple functional pathways like the propagation of calcium waves, ATP release, responses to ischemic conditions and apoptosis. In contrast to accumulating details which uncovered their functions, the molecular mechanisms for pannexin channel regulation and activation are hardly understood. To further elucidate regulatory mechanisms, we substituted cysteine residues, expected key elements for channel function, in extracellular and transmembrane regions of Pannexin 1 (Panx1). Most apparently, substitution of the transmembrane cysteine C40 resulted in constitutively open channels with profoundly increased activity. Hence, Xenopus laevis oocytes injected with corresponding cRNA showed strongly impaired viability, anomalous dye uptake and greatly increased whole-cell conductivity. All changes induced by C40 substitution were significantly reduced by the Panx1 channel blocker carbenoxolone, indicating that channel activity of the mutated Panx1 had been affected. In contrast, no changes occurred after substitution of the two other transmembrane cysteines, C215 and C227, in terms of channel conductivity. Finally, substitution of any of the four extracellular cysteines resulted in complete loss of channel function in both X. laevis oocytes and transfected N2A cells. From this, we conclude that cysteine residues of Panx1 reveal differential functional profiles for channel activation and drug sensitivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Single Cysteines in the Extracellular and Transmembrane Regions Modulate Pannexin 1 Channel Function

Loading next page...
 
/lp/springer_journal/single-cysteines-in-the-extracellular-and-transmembrane-regions-bIwEUy0ggs
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-011-9393-3
Publisher site
See Article on Publisher Site

Abstract

Pannexins form high-conductance ion channels in the membranes of many vertebrate cells. Functionally, they have been associated with multiple functional pathways like the propagation of calcium waves, ATP release, responses to ischemic conditions and apoptosis. In contrast to accumulating details which uncovered their functions, the molecular mechanisms for pannexin channel regulation and activation are hardly understood. To further elucidate regulatory mechanisms, we substituted cysteine residues, expected key elements for channel function, in extracellular and transmembrane regions of Pannexin 1 (Panx1). Most apparently, substitution of the transmembrane cysteine C40 resulted in constitutively open channels with profoundly increased activity. Hence, Xenopus laevis oocytes injected with corresponding cRNA showed strongly impaired viability, anomalous dye uptake and greatly increased whole-cell conductivity. All changes induced by C40 substitution were significantly reduced by the Panx1 channel blocker carbenoxolone, indicating that channel activity of the mutated Panx1 had been affected. In contrast, no changes occurred after substitution of the two other transmembrane cysteines, C215 and C227, in terms of channel conductivity. Finally, substitution of any of the four extracellular cysteines resulted in complete loss of channel function in both X. laevis oocytes and transfected N2A cells. From this, we conclude that cysteine residues of Panx1 reveal differential functional profiles for channel activation and drug sensitivity.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 21, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off