Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase Ce x Zr y Mn z O2 at low temperature: the interaction and mechanism

Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase Ce x Zr y Mn z O2 at low... Simultaneous oxidation of Hg0 and NH3-SCR of NO by catalyst is one of the key methods for co-purification of coal-fired flue gas. Till now, the interaction between the oxidation of Hg0 and NH3-SCR of NO and its mechanism have not clarified. In this study, a series of nanophase Ce x Zr y Mn z O2 was prepared for the simultaneous oxidation of Hg0 and NH3-SCR of NO at low temperature. The catalysts were characterized using surface area analysis, X-ray diffraction, temperature-programmed techniques, and several types of microscopy and spectroscopy. The experimental results indicated that the Ce0.47Zr0.22Mn0.31O2 exhibited superior Hg0 removal efficiency (> 99%) and NO conversion efficiency (> 90%) even at 150 °C, and it also exhibited a good durability in the presence of SO2 and H2O. The excellent performance of Ce0.47Zr0.22Mn0.31O2 on co-purifying Hg0 and NO was due to the stronger synergistic effects of Ce-Zr-Mn in Ce0.47Zr0.22Mn0.31O2 than that of the others, which was illustrated by the characterization results of XPS, XRD, and FT-IR. Moreover, it was found that the NO conversion of Ce0.47Zr0.22Mn0.31O2 could be slightly influenced by Hg0 and was decreased about 4% to the max, while that of Hg0 could rarely be affected by the selected catalytic reduction process of NO. It might be due to the co-purification mechanism of NO and Hg0. The mechanism of the simultaneous oxidation of Hg0 and NH3-SCR of NO was mainly due to the synergetic effect on the mobility of surface oxygen and the activation of lattice oxygen of Ce0.47Zr0.22Mn0.31O2. The effect of the oxidation of Hg0 on the NH3-SCR of NO was mainly due to the absorbed Hg0/Hg2+ on the surface of Ce0.47Zr0.22Mn0.31O2, which attenuated the formation of NH3(ad), −NH2(ad), and NH4 + on its acid sites. Similarly, the NH3-SCR of NO process could hardly influence the oxidation of Hg0 when NO and Hg0 were co-purified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Simultaneous oxidation of Hg0 and NH3-SCR of NO by nanophase Ce x Zr y Mn z O2 at low temperature: the interaction and mechanism

Loading next page...
 
/lp/springer_journal/simultaneous-oxidation-of-hg0-and-nh3-scr-of-no-by-nanophase-ce-x-zr-y-X5gn3Yx2iY
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-1657-3
Publisher site
See Article on Publisher Site

Abstract

Simultaneous oxidation of Hg0 and NH3-SCR of NO by catalyst is one of the key methods for co-purification of coal-fired flue gas. Till now, the interaction between the oxidation of Hg0 and NH3-SCR of NO and its mechanism have not clarified. In this study, a series of nanophase Ce x Zr y Mn z O2 was prepared for the simultaneous oxidation of Hg0 and NH3-SCR of NO at low temperature. The catalysts were characterized using surface area analysis, X-ray diffraction, temperature-programmed techniques, and several types of microscopy and spectroscopy. The experimental results indicated that the Ce0.47Zr0.22Mn0.31O2 exhibited superior Hg0 removal efficiency (> 99%) and NO conversion efficiency (> 90%) even at 150 °C, and it also exhibited a good durability in the presence of SO2 and H2O. The excellent performance of Ce0.47Zr0.22Mn0.31O2 on co-purifying Hg0 and NO was due to the stronger synergistic effects of Ce-Zr-Mn in Ce0.47Zr0.22Mn0.31O2 than that of the others, which was illustrated by the characterization results of XPS, XRD, and FT-IR. Moreover, it was found that the NO conversion of Ce0.47Zr0.22Mn0.31O2 could be slightly influenced by Hg0 and was decreased about 4% to the max, while that of Hg0 could rarely be affected by the selected catalytic reduction process of NO. It might be due to the co-purification mechanism of NO and Hg0. The mechanism of the simultaneous oxidation of Hg0 and NH3-SCR of NO was mainly due to the synergetic effect on the mobility of surface oxygen and the activation of lattice oxygen of Ce0.47Zr0.22Mn0.31O2. The effect of the oxidation of Hg0 on the NH3-SCR of NO was mainly due to the absorbed Hg0/Hg2+ on the surface of Ce0.47Zr0.22Mn0.31O2, which attenuated the formation of NH3(ad), −NH2(ad), and NH4 + on its acid sites. Similarly, the NH3-SCR of NO process could hardly influence the oxidation of Hg0 when NO and Hg0 were co-purified.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Mar 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off