Simultaneous measurement of velocity and pressure in a plane jet

Simultaneous measurement of velocity and pressure in a plane jet A new technique was developed for the simultaneous measurement of velocity and pressure in turbulent flows. To accomplish this objective, a new probe (hereafter called the combined probe) that consists of an X-type hot-wire probe and a newly devised pressure probe was developed. The pressure probe was miniaturized by the MEMS fabrication process and by using a 0.1-in. microphone as a pressure sensor for improving the spatial resolution. This pressure probe was placed between two hot-wire sensors of which the X-type hot-wire probe was composed. The pressure probe was given a hemispherical tip, like that of a pitot tube, because an earlier pressure probe with a conical tip suffered from a reduction in spatial resolution. The spatial arrangement of the pressure probe and the hot-wire probe for the combined probe was carefully determined, because there was a risk that the measurement accuracy of one probe will be influenced by disturbances caused by the other probe when the two probes were placed very close to each other. Therefore, the combined probe was arranged to engender no noticeable interference between the velocity data and the pressure data measured by their respective probes. As one application of this combined probe, simultaneous measurements of pressure and two components of instantaneous velocity were performed in a plane jet. The turbulent energy budget and the cross-correlation coefficient of velocity and pressure in the intermittent region of the plane jet were estimated. The results show that the mean streamwise velocity, velocity fluctuation, and pressure fluctuation profiles were consistent with those measured individually using the X-type hot-wire probe or pressure probe. Moreover, it was shown that the integral value of the diffusion term (which should theoretically be equal to zero) in the turbulent energy transport equation was closer to zero than previous reports (Bradbury in J Fluid Mech 23(Part 1):31–64, 1965). In addition, the time variation of the cross-correlation coefficient in the intermittent region supports the vortex structure model predicted in previous studies (Browne et al. in J Fluid Mech 149:355–373, 1984; Tanaka et al. JSME Int J Ser B 49(4):899–905, 2006; Sakai et al. J Fluid Sci Technol 2(3):611–622, 2007). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Simultaneous measurement of velocity and pressure in a plane jet

Loading next page...
 
/lp/springer_journal/simultaneous-measurement-of-velocity-and-pressure-in-a-plane-jet-kSCLvAD9v3
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1351-z
Publisher site
See Article on Publisher Site

Abstract

A new technique was developed for the simultaneous measurement of velocity and pressure in turbulent flows. To accomplish this objective, a new probe (hereafter called the combined probe) that consists of an X-type hot-wire probe and a newly devised pressure probe was developed. The pressure probe was miniaturized by the MEMS fabrication process and by using a 0.1-in. microphone as a pressure sensor for improving the spatial resolution. This pressure probe was placed between two hot-wire sensors of which the X-type hot-wire probe was composed. The pressure probe was given a hemispherical tip, like that of a pitot tube, because an earlier pressure probe with a conical tip suffered from a reduction in spatial resolution. The spatial arrangement of the pressure probe and the hot-wire probe for the combined probe was carefully determined, because there was a risk that the measurement accuracy of one probe will be influenced by disturbances caused by the other probe when the two probes were placed very close to each other. Therefore, the combined probe was arranged to engender no noticeable interference between the velocity data and the pressure data measured by their respective probes. As one application of this combined probe, simultaneous measurements of pressure and two components of instantaneous velocity were performed in a plane jet. The turbulent energy budget and the cross-correlation coefficient of velocity and pressure in the intermittent region of the plane jet were estimated. The results show that the mean streamwise velocity, velocity fluctuation, and pressure fluctuation profiles were consistent with those measured individually using the X-type hot-wire probe or pressure probe. Moreover, it was shown that the integral value of the diffusion term (which should theoretically be equal to zero) in the turbulent energy transport equation was closer to zero than previous reports (Bradbury in J Fluid Mech 23(Part 1):31–64, 1965). In addition, the time variation of the cross-correlation coefficient in the intermittent region supports the vortex structure model predicted in previous studies (Browne et al. in J Fluid Mech 149:355–373, 1984; Tanaka et al. JSME Int J Ser B 49(4):899–905, 2006; Sakai et al. J Fluid Sci Technol 2(3):611–622, 2007).

Journal

Experiments in FluidsSpringer Journals

Published: Jul 18, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off