Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps

Simultaneous identification of plant stresses and diseases in arable crops using proximal optical... The objective of this research was to detect plant stress caused by disease infestation and to discriminate this type of stress from nutrient deficiency stress in field conditions using spectral reflectance information. Yellow Rust infected winter wheat plants were compared to nutrient stressed and healthy plants. In-field hyperspectral reflectance images were taken with an imaging spectrograph. A normalisation method based on reflectance and light intensity adjustments was applied. For achieving high performance stress identification, Self-Organising Maps (SOMs) and Quadratic Discriminant Analysis (QDA) were introduced. Winter wheat infected with Yellow Rust was successfully recognised from nutrient stressed and healthy plants. Overall performance using five wavebands was more than 99%. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps

Loading next page...
 
/lp/springer_journal/simultaneous-identification-of-plant-stresses-and-diseases-in-arable-vuCNvaFAYT
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-006-9002-0
Publisher site
See Article on Publisher Site

Abstract

The objective of this research was to detect plant stress caused by disease infestation and to discriminate this type of stress from nutrient deficiency stress in field conditions using spectral reflectance information. Yellow Rust infected winter wheat plants were compared to nutrient stressed and healthy plants. In-field hyperspectral reflectance images were taken with an imaging spectrograph. A normalisation method based on reflectance and light intensity adjustments was applied. For achieving high performance stress identification, Self-Organising Maps (SOMs) and Quadratic Discriminant Analysis (QDA) were introduced. Winter wheat infected with Yellow Rust was successfully recognised from nutrient stressed and healthy plants. Overall performance using five wavebands was more than 99%.

Journal

Precision AgricultureSpringer Journals

Published: Apr 20, 2006

References

  • Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism
    Chou, H.M.; Bundock, N.; Rolfe, S.A.; Scholes, J.D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off