Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking

Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady... We present results from a series of experiments demonstrating the use of single quantum dots (QDs) as simultaneous temperature and velocity probes at the micro-scale. The fluorescence intensity of QDs varies predictably with temperature due to changes in quantum efficiency. We use total internal reflection fluorescence microscopy to study the region within 200 nm of a fluid-solid interface. A two-color, time-averaged temperature sensing technique based on the ensemble intensity changes of single QDs as compared to a reference dye (rhodamine 110) is presented. Many single QD intensity measurements are used to build intensity distributions which can be mapped to fluid temperature. Simultaneously, we track the motion of individual QDs, building a distribution of particle displacements, where the mean displacement yields the local fluid velocity. We also show that the width of the displacement distribution (or the diffusion coefficient) captures the scaling of the temperature to viscosity ratio, which may allow for independent viscosity measurement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Simultaneous, ensemble-averaged measurement of near-wall temperature and velocity in steady micro-flows using single quantum dot tracking

Loading next page...
 
/lp/springer_journal/simultaneous-ensemble-averaged-measurement-of-near-wall-temperature-BVyWsRuxhn
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0471-y
Publisher site
See Article on Publisher Site

Abstract

We present results from a series of experiments demonstrating the use of single quantum dots (QDs) as simultaneous temperature and velocity probes at the micro-scale. The fluorescence intensity of QDs varies predictably with temperature due to changes in quantum efficiency. We use total internal reflection fluorescence microscopy to study the region within 200 nm of a fluid-solid interface. A two-color, time-averaged temperature sensing technique based on the ensemble intensity changes of single QDs as compared to a reference dye (rhodamine 110) is presented. Many single QD intensity measurements are used to build intensity distributions which can be mapped to fluid temperature. Simultaneously, we track the motion of individual QDs, building a distribution of particle displacements, where the mean displacement yields the local fluid velocity. We also show that the width of the displacement distribution (or the diffusion coefficient) captures the scaling of the temperature to viscosity ratio, which may allow for independent viscosity measurement.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 15, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off