Simultaneous concentration and velocity field measurements in a shock-accelerated mixing layer

Simultaneous concentration and velocity field measurements in a shock-accelerated mixing layer A novel technique to obtain simultaneous velocity and concentration measurements is applied to the Richtmyer–Meshkov instability. After acceleration by a Mach 2.2 shock wave, the interface between the two gases develops into a turbulent mixing layer. A time-separated pair of acetone planar laser-induced fluorescence images are processed to yield concentration and, through application of the Advection-Corrected Correlation Image Velocimetry technique, velocity fields. This is the first application of this technique to shock-accelerated flows. We show that when applied to numerical simulations, this technique reproduces the velocity field to a similar quality as particle image velocimetry. When applied to the turbulent mixing layer of the experiments, information about the Reynolds number and anisotropy of the flow is obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Simultaneous concentration and velocity field measurements in a shock-accelerated mixing layer

Loading next page...
 
/lp/springer_journal/simultaneous-concentration-and-velocity-field-measurements-in-a-shock-IsN3dtsZT7
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1823-4
Publisher site
See Article on Publisher Site

Abstract

A novel technique to obtain simultaneous velocity and concentration measurements is applied to the Richtmyer–Meshkov instability. After acceleration by a Mach 2.2 shock wave, the interface between the two gases develops into a turbulent mixing layer. A time-separated pair of acetone planar laser-induced fluorescence images are processed to yield concentration and, through application of the Advection-Corrected Correlation Image Velocimetry technique, velocity fields. This is the first application of this technique to shock-accelerated flows. We show that when applied to numerical simulations, this technique reproduces the velocity field to a similar quality as particle image velocimetry. When applied to the turbulent mixing layer of the experiments, information about the Reynolds number and anisotropy of the flow is obtained.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 16, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off