Simultaneous Component Analysis by Means of Tucker3

Simultaneous Component Analysis by Means of Tucker3 A new model for simultaneous component analysis (SCA) is introduced that contains the existing SCA models with common loading matrix as special cases. The new SCA-T3 model is a multi-set generalization of the Tucker3 model for component analysis of three-way data. For each mode (observational units, variables, sets) a different number of components can be chosen and the obtained solution can be rotated without loss of fit to facilitate interpretation. SCA-T3 can be fitted on centered multi-set data and also on the corresponding covariance matrices. For this purpose, alternating least squares algorithms are derived. SCA-T3 is evaluated in a simulation study, and its practical merits are demonstrated for several benchmark datasets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychometrika Springer Journals

Simultaneous Component Analysis by Means of Tucker3

Loading next page...
 
/lp/springer_journal/simultaneous-component-analysis-by-means-of-tucker3-dISBihVK3u
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Psychometric Society
Subject
Psychology; Psychometrics; Assessment, Testing and Evaluation; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Statistical Theory and Methods
ISSN
0033-3123
eISSN
1860-0980
D.O.I.
10.1007/s11336-017-9568-7
Publisher site
See Article on Publisher Site

Abstract

A new model for simultaneous component analysis (SCA) is introduced that contains the existing SCA models with common loading matrix as special cases. The new SCA-T3 model is a multi-set generalization of the Tucker3 model for component analysis of three-way data. For each mode (observational units, variables, sets) a different number of components can be chosen and the obtained solution can be rotated without loss of fit to facilitate interpretation. SCA-T3 can be fitted on centered multi-set data and also on the corresponding covariance matrices. For this purpose, alternating least squares algorithms are derived. SCA-T3 is evaluated in a simulation study, and its practical merits are demonstrated for several benchmark datasets.

Journal

PsychometrikaSpringer Journals

Published: Apr 6, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off