Simultaneous area partitioning and allocation for complete coverage by multiple autonomous industrial robots

Simultaneous area partitioning and allocation for complete coverage by multiple autonomous... For tasks that require complete coverage of surfaces by multiple autonomous industrial robots, it is important that the robots collaborate to appropriately partition and allocate the surface areas amongst themselves such that the robot team’s objectives are optimized. An approach to this problem is presented, which takes into account unstructured and complex 3D environments, and robots with different capabilities. The proposed area partitioning and allocation approach utilizes Voronoi partitioning to partition objects’ surfaces, and multi-objective optimization to allocate the partitioned areas to the robots whilst optimizing robot team’s objectives. In addition to minimizing the overall completion time and achieving complete coverage, which are objectives particularly useful for applications such as surface cleaning, manipulability measure and joint’s torque are also optimized so as to help autonomous industrial robots to operate better in applications such as spray painting and grit-blasting. The approach is validated using six case studies that consist of comparative studies, complex simulated scenarios as well as real scenarios using data obtained from real objects and applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Simultaneous area partitioning and allocation for complete coverage by multiple autonomous industrial robots

Loading next page...
 
/lp/springer_journal/simultaneous-area-partitioning-and-allocation-for-complete-coverage-by-Yj9eKAhkPY
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
D.O.I.
10.1007/s10514-017-9631-3
Publisher site
See Article on Publisher Site

Abstract

For tasks that require complete coverage of surfaces by multiple autonomous industrial robots, it is important that the robots collaborate to appropriately partition and allocate the surface areas amongst themselves such that the robot team’s objectives are optimized. An approach to this problem is presented, which takes into account unstructured and complex 3D environments, and robots with different capabilities. The proposed area partitioning and allocation approach utilizes Voronoi partitioning to partition objects’ surfaces, and multi-objective optimization to allocate the partitioned areas to the robots whilst optimizing robot team’s objectives. In addition to minimizing the overall completion time and achieving complete coverage, which are objectives particularly useful for applications such as surface cleaning, manipulability measure and joint’s torque are also optimized so as to help autonomous industrial robots to operate better in applications such as spray painting and grit-blasting. The approach is validated using six case studies that consist of comparative studies, complex simulated scenarios as well as real scenarios using data obtained from real objects and applications.

Journal

Autonomous RobotsSpringer Journals

Published: Apr 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off