Simulation of the transient thermally induced beam quality degradationin end-pumped slab Yb:YAG amplifiers of hundred-mJ-level

Simulation of the transient thermally induced beam quality degradationin end-pumped slab Yb:YAG... The transient thermal distribution and thermally induced beam quality (M 2) degradation in low repetition (10 Hz) and hundred-mJ-level end-pumped Yb:YAG slab amplifiers with different thicknesses are discussed. Using Fast Fourier Transformation, the output beam quality is evaluated for different pump conditions, including variable pump power, single- or double-end pumping, and different pump beam widths. Simulation results show that for a slab amplifier operating at low repetition rates and high pump energy levels, adequate thermal property and output beam quality can be achieved by simply increasing the slab thickness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Physics B Springer Journals

Simulation of the transient thermally induced beam quality degradationin end-pumped slab Yb:YAG amplifiers of hundred-mJ-level

Loading next page...
 
/lp/springer_journal/simulation-of-the-transient-thermally-induced-beam-quality-J35t7maYu0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Physics; Physics, general; Physical Chemistry; Optics, Lasers, Photonics, Optical Devices; Quantum Optics; Engineering, general
ISSN
0946-2171
eISSN
1432-0649
D.O.I.
10.1007/s00340-017-6807-7
Publisher site
See Article on Publisher Site

Abstract

The transient thermal distribution and thermally induced beam quality (M 2) degradation in low repetition (10 Hz) and hundred-mJ-level end-pumped Yb:YAG slab amplifiers with different thicknesses are discussed. Using Fast Fourier Transformation, the output beam quality is evaluated for different pump conditions, including variable pump power, single- or double-end pumping, and different pump beam widths. Simulation results show that for a slab amplifier operating at low repetition rates and high pump energy levels, adequate thermal property and output beam quality can be achieved by simply increasing the slab thickness.

Journal

Applied Physics BSpringer Journals

Published: Aug 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off