Simulation of the potential distribution in an inhomogeneously doped workspace of a double-gate SOI CMOS nanotransistor

Simulation of the potential distribution in an inhomogeneously doped workspace of a double-gate... One possible approach to the analytical solution of the 2D Poisson equation for potential in the workspace of a double-gate CMOS nanotransistor with a silicon-on-insulator structure with an inhomogeneously doped workspace as a Gaussian function is discussed. Based on the numerical solutions of the Poisson equation, the dependences of a number of major doping electrophysical characteristics, such as the potential distribution in the workspace, threshold voltage, and subthreshold current under different technological parameters on the dopant profile, are analyzed. For the selected topological standards, the optimization of the dopant profile parameters gives an additional opportunity to control the main characteristics, along with the thickness of the workspace and the thickness of the gated oxide of the front shutter, which is important in the analysis of the applicability of nanotransistor structures. The physical limitations to optimize the electrophysical characteristics, and in particular, the effective suppression of the short channel effects, are considered. The simulation results are in good accordance with the modeled data obtained using a commercially available for 2D simulation of the transistor structures ATLASTM software package. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Simulation of the potential distribution in an inhomogeneously doped workspace of a double-gate SOI CMOS nanotransistor

Loading next page...
 
/lp/springer_journal/simulation-of-the-potential-distribution-in-an-inhomogeneously-doped-dookKZv3pS
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S1063739717010061
Publisher site
See Article on Publisher Site

Abstract

One possible approach to the analytical solution of the 2D Poisson equation for potential in the workspace of a double-gate CMOS nanotransistor with a silicon-on-insulator structure with an inhomogeneously doped workspace as a Gaussian function is discussed. Based on the numerical solutions of the Poisson equation, the dependences of a number of major doping electrophysical characteristics, such as the potential distribution in the workspace, threshold voltage, and subthreshold current under different technological parameters on the dopant profile, are analyzed. For the selected topological standards, the optimization of the dopant profile parameters gives an additional opportunity to control the main characteristics, along with the thickness of the workspace and the thickness of the gated oxide of the front shutter, which is important in the analysis of the applicability of nanotransistor structures. The physical limitations to optimize the electrophysical characteristics, and in particular, the effective suppression of the short channel effects, are considered. The simulation results are in good accordance with the modeled data obtained using a commercially available for 2D simulation of the transistor structures ATLASTM software package.

Journal

Russian MicroelectronicsSpringer Journals

Published: Mar 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off