Simulation of the distribution of spinocerebellar ataxia type 1 in Yakut populations: Model parameters and results of simulation

Simulation of the distribution of spinocerebellar ataxia type 1 in Yakut populations: Model... Demographic and clinical genetic parameters used for simulation modeling of the prevalence of spinocerebellar ataxia type 1 (SCA1) in Yakut populations are described. Demographic parameters of simulated populations and the clinical genetic characteristics of carriers of the SCA1 mutant allele in them have been compared with actual data on Abyisky and Ust-Aldansky uluses of the Republic of Sakha (Yakutia). The results of a series of simulation experiments (without migration or spontaneous mutagenesis) agree with the conclusion that the high prevalence of rate of spinocerebellar ataxia type 1 in Yakut populations may be maintained because of their specific demographic structure. Prediction of the disease prevalence has shown that it will take about 1290 years for natural selection to eliminate the mutation from the population. If medical genetic counseling (MGC) is offered to 1% of the carriers of the mutation, this period will be reduced to 200 years. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Simulation of the distribution of spinocerebellar ataxia type 1 in Yakut populations: Model parameters and results of simulation

Loading next page...
 
/lp/springer_journal/simulation-of-the-distribution-of-spinocerebellar-ataxia-type-1-in-AN5yGDrV30
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795410070148
Publisher site
See Article on Publisher Site

Abstract

Demographic and clinical genetic parameters used for simulation modeling of the prevalence of spinocerebellar ataxia type 1 (SCA1) in Yakut populations are described. Demographic parameters of simulated populations and the clinical genetic characteristics of carriers of the SCA1 mutant allele in them have been compared with actual data on Abyisky and Ust-Aldansky uluses of the Republic of Sakha (Yakutia). The results of a series of simulation experiments (without migration or spontaneous mutagenesis) agree with the conclusion that the high prevalence of rate of spinocerebellar ataxia type 1 in Yakut populations may be maintained because of their specific demographic structure. Prediction of the disease prevalence has shown that it will take about 1290 years for natural selection to eliminate the mutation from the population. If medical genetic counseling (MGC) is offered to 1% of the carriers of the mutation, this period will be reduced to 200 years.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 22, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off