Simulation of the Circulation and Space Structure of Thermohaline Fields in the Sevastopol Bay with Regard for the Actual External Data (Winter, 1997)

Simulation of the Circulation and Space Structure of Thermohaline Fields in the Sevastopol Bay... We discuss the results of the numerical experiment aimed at the simulation of the behavior of currents and transformations of the temperature and salt modes in the Sevastopol Bay in January–February 1997. In the numerical analysis, we use actual data on the velocity and direction of the wind, sea surface temperature, and the discharge of River Chernaya. It is shown that the circulation and structure of hydrological fields are mainly connected with the direction of the wind, its intensity, and variability in the course of time. Since the analyzed water area is shallow, the currents inside the bay undergo rapid transformations (less than for an hour after changes in the wind). At the same time, the transformations of the thermohaline fields are slower. Due to the inflow of fresh waters of River Chernaya and salt waters from the open sea through the strait, the structure of thermohaline fields formed in the bay is nonuniform (both in the vertical and horizontal directions). The distribution of salinity plays the main role in the formation of the vertical stratification, which is natural for the winter season. Due to the process of freshening of water, a quite high vertical salinity gradient is formed in the upper layer of the sea. As a result, the process of cooling does not lead to the appearance of convection and inversions of temperature are formed in the case where warmer waters are located in the bottom layers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Simulation of the Circulation and Space Structure of Thermohaline Fields in the Sevastopol Bay with Regard for the Actual External Data (Winter, 1997)

Loading next page...
 
/lp/springer_journal/simulation-of-the-circulation-and-space-structure-of-thermohaline-Acb3kWZP0Z
Publisher
Kluwer Academic Publishers-Consultants Bureau
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-005-0035-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial