Simulation of surge phenomena and transformation of the admixture field in the Sea of Azov in the presence of stationary currents

Simulation of surge phenomena and transformation of the admixture field in the Sea of Azov in the... Using a three-dimensional nonlinear mathematical model, we study the processes of transfer and diffusion of contaminants in the Sea of Azov in the presence of stationary currents. Changes in the sea level, surge phenomena, and the direction and velocity of stationary currents caused by winds with different maximum velocities are analyzed. We estimate the region of applicability of the linear approximation and the choice of the value of integration steps over space and time coordinates. It is shown that the growth of the maximum wind velocity increases the contaminated domains and the time of complete dispersion of the admixture. Solutions obtained in the linear approximation differ slightly from those obtained by using the nonlinear model for wind velocities up to 5 m/sec. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Simulation of surge phenomena and transformation of the admixture field in the Sea of Azov in the presence of stationary currents

Loading next page...
 
/lp/springer_journal/simulation-of-surge-phenomena-and-transformation-of-the-admixture-lUbhFqIWfr
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-008-9019-1
Publisher site
See Article on Publisher Site

Abstract

Using a three-dimensional nonlinear mathematical model, we study the processes of transfer and diffusion of contaminants in the Sea of Azov in the presence of stationary currents. Changes in the sea level, surge phenomena, and the direction and velocity of stationary currents caused by winds with different maximum velocities are analyzed. We estimate the region of applicability of the linear approximation and the choice of the value of integration steps over space and time coordinates. It is shown that the growth of the maximum wind velocity increases the contaminated domains and the time of complete dispersion of the admixture. Solutions obtained in the linear approximation differ slightly from those obtained by using the nonlinear model for wind velocities up to 5 m/sec.

Journal

Physical OceanographySpringer Journals

Published: Dec 16, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off