Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system

Simulation of global MPPT based on teaching–learning-based optimization technique for partially... The power against voltage curve for PV power system during shadow condition contains number of local maximum power points (MPPs) and only one global. The classical maximum power point tracking (MPPT) algorithms are designed to follow the global MPP, but they stuck around local MPPs such as fuzzy logic controller (FLC). Therefore, A global MPPT based on teaching–learning-based optimization (TLBO) algorithm has been presented in this paper. The performance of PV system under abnormal conditions such as partial shading has been improved. TLBO algorithm is simple computational steps and faster convergence to optimal solution. A comprehensive assessment of TLBO-based tracker is carried out against FLC and particle swarm optimization (PSO) techniques for same conditions. Six different partial shading patterns have been employed to investigate TLBO performance using MATLAB/Simulink. The parameters of comparison include the tracking speed and overall tracking efficiency. The results confirm that TLBO-based tracker exactly convergence to global MPP under different studied cases. TLBO has best performance compared to the other studied techniques. The tracking speed is increased using TLBO-based tracker; the average tracking time of global MPP is reduced by more than 23.8 % compared with PSO in all studied different partial shading patterns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Electrical Engineering (Archiv fur Elektrotechnik) Springer Journals

Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system

Loading next page...
 
/lp/springer_journal/simulation-of-global-mppt-based-on-teaching-learning-based-AstXs4sACe
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Electrical Engineering; Power Electronics, Electrical Machines and Networks; Energy Economics
ISSN
0948-7921
eISSN
1432-0487
D.O.I.
10.1007/s00202-016-0449-3
Publisher site
See Article on Publisher Site

Abstract

The power against voltage curve for PV power system during shadow condition contains number of local maximum power points (MPPs) and only one global. The classical maximum power point tracking (MPPT) algorithms are designed to follow the global MPP, but they stuck around local MPPs such as fuzzy logic controller (FLC). Therefore, A global MPPT based on teaching–learning-based optimization (TLBO) algorithm has been presented in this paper. The performance of PV system under abnormal conditions such as partial shading has been improved. TLBO algorithm is simple computational steps and faster convergence to optimal solution. A comprehensive assessment of TLBO-based tracker is carried out against FLC and particle swarm optimization (PSO) techniques for same conditions. Six different partial shading patterns have been employed to investigate TLBO performance using MATLAB/Simulink. The parameters of comparison include the tracking speed and overall tracking efficiency. The results confirm that TLBO-based tracker exactly convergence to global MPP under different studied cases. TLBO has best performance compared to the other studied techniques. The tracking speed is increased using TLBO-based tracker; the average tracking time of global MPP is reduced by more than 23.8 % compared with PSO in all studied different partial shading patterns.

Journal

Electrical Engineering (Archiv fur Elektrotechnik)Springer Journals

Published: Oct 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off