Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system

Simulation of global MPPT based on teaching–learning-based optimization technique for partially... The power against voltage curve for PV power system during shadow condition contains number of local maximum power points (MPPs) and only one global. The classical maximum power point tracking (MPPT) algorithms are designed to follow the global MPP, but they stuck around local MPPs such as fuzzy logic controller (FLC). Therefore, A global MPPT based on teaching–learning-based optimization (TLBO) algorithm has been presented in this paper. The performance of PV system under abnormal conditions such as partial shading has been improved. TLBO algorithm is simple computational steps and faster convergence to optimal solution. A comprehensive assessment of TLBO-based tracker is carried out against FLC and particle swarm optimization (PSO) techniques for same conditions. Six different partial shading patterns have been employed to investigate TLBO performance using MATLAB/Simulink. The parameters of comparison include the tracking speed and overall tracking efficiency. The results confirm that TLBO-based tracker exactly convergence to global MPP under different studied cases. TLBO has best performance compared to the other studied techniques. The tracking speed is increased using TLBO-based tracker; the average tracking time of global MPP is reduced by more than 23.8 % compared with PSO in all studied different partial shading patterns. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Electrical Engineering (Archiv fur Elektrotechnik) Springer Journals

Simulation of global MPPT based on teaching–learning-based optimization technique for partially shaded PV system

Loading next page...
 
/lp/springer_journal/simulation-of-global-mppt-based-on-teaching-learning-based-AstXs4sACe
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Electrical Engineering; Power Electronics, Electrical Machines and Networks; Energy Economics
ISSN
0948-7921
eISSN
1432-0487
D.O.I.
10.1007/s00202-016-0449-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial