Simulation of Characteristics of Condensed Products in a Combustion Chamber

Simulation of Characteristics of Condensed Products in a Combustion Chamber The principles of computational determination of the characteristics of both coarse and fine fractions of condensed combustion products formed at the propellant surface and evolving as part of the multiphase flow in the combustion chamber. The characteristics of condensed products at the propellant surface are determined by modeling the processes involved in their formation using a decision-making system based on an expert system approach. An evolution model for non-one-dimensional flow with the mutual influence of the characteristics of condensed and gaseous combustion products is developed to determine the characteristics of condensed products in the multiphase flow of combustion products. The developed tools allow the characteristics of condensed products to be determined depending on the propellant composition, characteristics of the propellant grain, and combustion chamber parameters. Parametric analysis of the developed models was performed for combustion chamber conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Combustion, Explosion, and Shock Waves Springer Journals

Simulation of Characteristics of Condensed Products in a Combustion Chamber

Loading next page...
 
/lp/springer_journal/simulation-of-characteristics-of-condensed-products-in-a-combustion-7YpDs9pAT6
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Physics; Classical Mechanics; Classical and Continuum Physics; Physical Chemistry; Vibration, Dynamical Systems, Control; Engineering, general
ISSN
0010-5082
eISSN
1573-8345
D.O.I.
10.1134/S0010508218030061
Publisher site
See Article on Publisher Site

Abstract

The principles of computational determination of the characteristics of both coarse and fine fractions of condensed combustion products formed at the propellant surface and evolving as part of the multiphase flow in the combustion chamber. The characteristics of condensed products at the propellant surface are determined by modeling the processes involved in their formation using a decision-making system based on an expert system approach. An evolution model for non-one-dimensional flow with the mutual influence of the characteristics of condensed and gaseous combustion products is developed to determine the characteristics of condensed products in the multiphase flow of combustion products. The developed tools allow the characteristics of condensed products to be determined depending on the propellant composition, characteristics of the propellant grain, and combustion chamber parameters. Parametric analysis of the developed models was performed for combustion chamber conditions.

Journal

Combustion, Explosion, and Shock WavesSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off