Simulation of bacteria-plant coevolution in the mutualistic symbiosis

Simulation of bacteria-plant coevolution in the mutualistic symbiosis We present the mathematical model for coevolution of root nodule bacteria (rhizobia) and leguminous plants which is based on the partners’ positive feedbacks resulted from their metabolic integration. The model parameters were introduced which determine: (1) coordinated changes in plant and bacterial population structures; (2) increase of fitness (reproductive potentials) in both partners as dependent on the symbiotic efficiency determined by proportion of N2-fixing rhizobia strain in root nodules. Computer experiments demonstrated that microevolution of the simulated system may follow either oscillatory or quasi-monotonous regime as dependent of frequency-dependent selection (FDS) in plant population. Negative FDS occurring in the bacterial population during competition for nodulation in combination with the positive partners’ feedback may lead to anchoring the bacterial mutations which lead either to acquisition of mutualistic traits or to changes in specificity of their expression. Anchoring of the mutualistic strains occurs most successfully in the quasi-monotonous regime and results in the improvement of genetic stability in symbiotic system. Russian Journal of Genetics Springer Journals

Simulation of bacteria-plant coevolution in the mutualistic symbiosis

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2009 by Pleiades Publishing, Ltd.
Biomedicine; Microbial Genetics and Genomics; Animal Genetics and Genomics; Human Genetics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial