Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring

Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring We present a model-order-reduction approach to simulation-based classification, with particular application to structural health monitoring. The approach exploits (1) synthetic results obtained by repeated solution of a parametrized mathematical model for different values of the parameters, (2) machine-learning algorithms to generate a classifier that monitors the damage state of the system, and (3) a reduced basis method to reduce the computational burden associated with the model evaluations. Furthermore, we propose a mathematical formulation which integrates the partial differential equation model within the classification framework and clarifies the influence of model error on classification performance. We illustrate our approach and we demonstrate its effectiveness through the vehicle of a particular physical companion experiment, a harmonically excited microtruss. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Computational Methods in Engineering Springer Journals

Simulation-Based Classification; a Model-Order-Reduction Approach for Structural Health Monitoring

Loading next page...
 
/lp/springer_journal/simulation-based-classification-a-model-order-reduction-approach-for-Z0YJ0gA5dC
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by CIMNE, Barcelona, Spain
Subject
Engineering; Mathematical and Computational Engineering
ISSN
1134-3060
eISSN
1886-1784
D.O.I.
10.1007/s11831-016-9185-0
Publisher site
See Article on Publisher Site

Abstract

We present a model-order-reduction approach to simulation-based classification, with particular application to structural health monitoring. The approach exploits (1) synthetic results obtained by repeated solution of a parametrized mathematical model for different values of the parameters, (2) machine-learning algorithms to generate a classifier that monitors the damage state of the system, and (3) a reduced basis method to reduce the computational burden associated with the model evaluations. Furthermore, we propose a mathematical formulation which integrates the partial differential equation model within the classification framework and clarifies the influence of model error on classification performance. We illustrate our approach and we demonstrate its effectiveness through the vehicle of a particular physical companion experiment, a harmonically excited microtruss.

Journal

Archives of Computational Methods in EngineeringSpringer Journals

Published: Aug 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off