Simulation and Estimation of Extreme Quantiles and Extreme Probabilities

Simulation and Estimation of Extreme Quantiles and Extreme Probabilities Let X be a random vector with distribution μ on ℝ d and Φ be a mapping from ℝ d to ℝ. That mapping acts as a black box, e.g., the result from some computer experiments for which no analytical expression is available. This paper presents an efficient algorithm to estimate a tail probability given a quantile or a quantile given a tail probability. The algorithm improves upon existing multilevel splitting methods and can be analyzed using Poisson process tools that lead to exact description of the distribution of the estimated probabilities and quantiles. The performance of the algorithm is demonstrated in a problem related to digital watermarking. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Simulation and Estimation of Extreme Quantiles and Extreme Probabilities

Loading next page...
 
/lp/springer_journal/simulation-and-estimation-of-extreme-quantiles-and-extreme-WLauFTrZAo
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Mathematics; Mathematical Methods in Physics; Theoretical, Mathematical and Computational Physics; Calculus of Variations and Optimal Control; Optimization; Numerical and Computational Physics; Systems Theory, Control
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-011-9135-z
Publisher site
See Article on Publisher Site

Abstract

Let X be a random vector with distribution μ on ℝ d and Φ be a mapping from ℝ d to ℝ. That mapping acts as a black box, e.g., the result from some computer experiments for which no analytical expression is available. This paper presents an efficient algorithm to estimate a tail probability given a quantile or a quantile given a tail probability. The algorithm improves upon existing multilevel splitting methods and can be analyzed using Poisson process tools that lead to exact description of the distribution of the estimated probabilities and quantiles. The performance of the algorithm is demonstrated in a problem related to digital watermarking.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Oct 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off