Simulation analysis of the influence of dynamic flow stress behavior on chip formation

Simulation analysis of the influence of dynamic flow stress behavior on chip formation The reliability and accuracy of finite element models of metal machining are heavily reliant on the underlying material flow stress models. The aim of this study is to characterize the relation between the flow stress models and the chip morphology to provide a deeper insight into the process of serrated chip formation. Firstly, in the context of a flow stress model, the critical conditions for generation of the serrated chips are theoretically analyzed. Then, simulations are performed using two different constitutive models with five parameters sets, and the results are discussed in relation to how they verify the theoretical results. In order to better understand the process of serrated chip formation, attention is concentrated on the critical steps characterizing the formation of a single chip segment. The cutting process parameters (stress, strain, and temperature) are discussed. In addition, the mechanism by which the chip morphology transforms from continuous to serrated with increasing cutting speed is investigated in terms of the variation of flow stress curves. The results show that the slope of decrease and the strain value at the peak point of flow stress curves both greatly affect chip morphology. That is, the slope of decrease of the flow stress curve largely controls the formation of serrated chips, while the strain point at the peak determines the frequency and degree of serration of chips. It is found that simulations by manipulating well the flow stress models can produce results for chip morphology, cutting forces, etc. that are closer to those obtained experimentally. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Simulation analysis of the influence of dynamic flow stress behavior on chip formation

Loading next page...
 
/lp/springer_journal/simulation-analysis-of-the-influence-of-dynamic-flow-stress-behavior-jyaAmIcDmZ
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1275-0
Publisher site
See Article on Publisher Site

Abstract

The reliability and accuracy of finite element models of metal machining are heavily reliant on the underlying material flow stress models. The aim of this study is to characterize the relation between the flow stress models and the chip morphology to provide a deeper insight into the process of serrated chip formation. Firstly, in the context of a flow stress model, the critical conditions for generation of the serrated chips are theoretically analyzed. Then, simulations are performed using two different constitutive models with five parameters sets, and the results are discussed in relation to how they verify the theoretical results. In order to better understand the process of serrated chip formation, attention is concentrated on the critical steps characterizing the formation of a single chip segment. The cutting process parameters (stress, strain, and temperature) are discussed. In addition, the mechanism by which the chip morphology transforms from continuous to serrated with increasing cutting speed is investigated in terms of the variation of flow stress curves. The results show that the slope of decrease and the strain value at the peak point of flow stress curves both greatly affect chip morphology. That is, the slope of decrease of the flow stress curve largely controls the formation of serrated chips, while the strain point at the peak determines the frequency and degree of serration of chips. It is found that simulations by manipulating well the flow stress models can produce results for chip morphology, cutting forces, etc. that are closer to those obtained experimentally.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off