Simulating the performance of ring-based coriolis vibrating gyroscopic sensors

Simulating the performance of ring-based coriolis vibrating gyroscopic sensors This paper presents a mathematical model for an imperfect ring gyroscope exhibiting spatial variations of the mass and stiffness of the ring arising from manufacturing imperfections and simulates the dynamics of the resonating ring dictating its performance under practical operating conditions. Actual tests performed on real devices involve significant costs and procedures, so the work aims to achieve the same aim with high fidelity models. The model used investigates the effects of shock and frequency splits between the drive and sense modes on the performance of the sensor in relation to the extent of the spatial mass and stiffness variations in the resonating ring. Severe reductions in shock tolerance are observed at shorter shock pulse durations. Small frequency splits between the drive and sense modes have minimal effects on the shock tolerance and the ring’s sense mode amplitude when excited electrostatically, but sharply increase the zero-rate readout (bias) and decrease the sensor’s sensitivity to angular velocity changes (scale factor). The extent of the tolerable frequency splits is limited by the half-power bandwidth of the sense mode, which is predominantly influenced by the system damping. 1 Introduction For ring gyroscopes, the mode pair of interest, which defines the operation of http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microsystem Technologies Springer Journals

Simulating the performance of ring-based coriolis vibrating gyroscopic sensors

Loading next page...
 
/lp/springer_journal/simulating-the-performance-of-ring-based-coriolis-vibrating-gyroscopic-kF0Xj8djFU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Electronics and Microelectronics, Instrumentation; Nanotechnology; Mechanical Engineering
ISSN
0946-7076
eISSN
1432-1858
D.O.I.
10.1007/s00542-018-3944-9
Publisher site
See Article on Publisher Site

Abstract

This paper presents a mathematical model for an imperfect ring gyroscope exhibiting spatial variations of the mass and stiffness of the ring arising from manufacturing imperfections and simulates the dynamics of the resonating ring dictating its performance under practical operating conditions. Actual tests performed on real devices involve significant costs and procedures, so the work aims to achieve the same aim with high fidelity models. The model used investigates the effects of shock and frequency splits between the drive and sense modes on the performance of the sensor in relation to the extent of the spatial mass and stiffness variations in the resonating ring. Severe reductions in shock tolerance are observed at shorter shock pulse durations. Small frequency splits between the drive and sense modes have minimal effects on the shock tolerance and the ring’s sense mode amplitude when excited electrostatically, but sharply increase the zero-rate readout (bias) and decrease the sensor’s sensitivity to angular velocity changes (scale factor). The extent of the tolerable frequency splits is limited by the half-power bandwidth of the sense mode, which is predominantly influenced by the system damping. 1 Introduction For ring gyroscopes, the mode pair of interest, which defines the operation of

Journal

Microsystem TechnologiesSpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off