Simulating Compressible Two-Medium Flows with Sharp-Interface Adaptive Runge–Kutta Discontinuous Galerkin Methods

Simulating Compressible Two-Medium Flows with Sharp-Interface Adaptive Runge–Kutta... A cut cell based sharp-interface Runge–Kutta discontinuous Galerkin method, with quadtree-like adaptive mesh refinement, is developed for simulating compressible two-medium flows with clear interfaces. In this approach, the free interface is represented by curved cut faces and evolved by solving the level-set equation with high order upstream central scheme. Thus every mixed cell is divided into two cut cells by a cut face. The Runge–Kutta discontinuous Galerkin method is applied to calculate each single-medium flow governed by the Euler equations. A two-medium exact Riemann solver is applied on the cut faces and the Lax–Friedrichs flux is applied on the regular faces. Refining and coarsening of meshes occur according to criteria on distance from the material interface and on magnitudes of pressure/density gradient, and the solutions and fluxes between upper-level and lower-level meshes are synchronized by $$L^2$$ L 2 projections to keep conservation and high order accuracy. This proposed method inherits the advantages of the discontinuous Galerkin method (compact and high order) and cut cell method (sharp interface and curved cut face), thus it is fully conservative, consistent, and is very accurate on both interface and flow field calculations. Numerical tests with a variety of parameters illustrate the accuracy and robustness of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Scientific Computing Springer Journals

Simulating Compressible Two-Medium Flows with Sharp-Interface Adaptive Runge–Kutta Discontinuous Galerkin Methods

Loading next page...
 
/lp/springer_journal/simulating-compressible-two-medium-flows-with-sharp-interface-adaptive-Tm34KH8ksZ
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Mathematics; Algorithms; Computational Mathematics and Numerical Analysis; Mathematical and Computational Engineering; Theoretical, Mathematical and Computational Physics
ISSN
0885-7474
eISSN
1573-7691
D.O.I.
10.1007/s10915-017-0511-y
Publisher site
See Article on Publisher Site

Abstract

A cut cell based sharp-interface Runge–Kutta discontinuous Galerkin method, with quadtree-like adaptive mesh refinement, is developed for simulating compressible two-medium flows with clear interfaces. In this approach, the free interface is represented by curved cut faces and evolved by solving the level-set equation with high order upstream central scheme. Thus every mixed cell is divided into two cut cells by a cut face. The Runge–Kutta discontinuous Galerkin method is applied to calculate each single-medium flow governed by the Euler equations. A two-medium exact Riemann solver is applied on the cut faces and the Lax–Friedrichs flux is applied on the regular faces. Refining and coarsening of meshes occur according to criteria on distance from the material interface and on magnitudes of pressure/density gradient, and the solutions and fluxes between upper-level and lower-level meshes are synchronized by $$L^2$$ L 2 projections to keep conservation and high order accuracy. This proposed method inherits the advantages of the discontinuous Galerkin method (compact and high order) and cut cell method (sharp interface and curved cut face), thus it is fully conservative, consistent, and is very accurate on both interface and flow field calculations. Numerical tests with a variety of parameters illustrate the accuracy and robustness of the proposed method.

Journal

Journal of Scientific ComputingSpringer Journals

Published: Jul 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off