Simulated tissue growth for 3D printed scaffolds

Simulated tissue growth for 3D printed scaffolds Experiments have demonstrated biological tissues grow by mechanically sensing their localized curvature, therefore making geometry a key consideration for tissue scaffold design. We developed a simulation approach for modeling tissue growth on beam-based geometries of repeating unit cells, with four lattice topologies considered. In simulations, tissue was seeded on surfaces with new tissue growing in empty voxels with positive curvature. Growth was fastest on topologies with more beams per unit cell when unit cell volume/porosity was fixed, but fastest for topologies with fewer beams per unit cell when beam width/porosity was fixed. Tissue filled proportional to mean positive surface curvature per volume. Faster filling scaffolds had lower permeability, which is important to support nutrient transport, and highlights a need for tuning geometries appropriately for conflicting trade-offs. A balance among trade-offs was found for scaffolds with beam diameters of about $$300\,\upmu \hbox {m}$$ 300 μ m and 50% porosity, therefore providing the opportunity for further optimization based on criteria such as mechanical factors. Overall, these findings provide insight into how curvature-based tissue growth progresses in complex scaffold geometries, and a foundation for developing optimized scaffolds for clinical applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomechanics and Modeling in Mechanobiology Springer Journals

Simulated tissue growth for 3D printed scaffolds

Loading next page...
 
/lp/springer_journal/simulated-tissue-growth-for-3d-printed-scaffolds-0GLF4MWRPY
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Theoretical and Applied Mechanics; Biomedical Engineering; Biological and Medical Physics, Biophysics
ISSN
1617-7959
eISSN
1617-7940
D.O.I.
10.1007/s10237-018-1040-9
Publisher site
See Article on Publisher Site

Abstract

Experiments have demonstrated biological tissues grow by mechanically sensing their localized curvature, therefore making geometry a key consideration for tissue scaffold design. We developed a simulation approach for modeling tissue growth on beam-based geometries of repeating unit cells, with four lattice topologies considered. In simulations, tissue was seeded on surfaces with new tissue growing in empty voxels with positive curvature. Growth was fastest on topologies with more beams per unit cell when unit cell volume/porosity was fixed, but fastest for topologies with fewer beams per unit cell when beam width/porosity was fixed. Tissue filled proportional to mean positive surface curvature per volume. Faster filling scaffolds had lower permeability, which is important to support nutrient transport, and highlights a need for tuning geometries appropriately for conflicting trade-offs. A balance among trade-offs was found for scaffolds with beam diameters of about $$300\,\upmu \hbox {m}$$ 300 μ m and 50% porosity, therefore providing the opportunity for further optimization based on criteria such as mechanical factors. Overall, these findings provide insight into how curvature-based tissue growth progresses in complex scaffold geometries, and a foundation for developing optimized scaffolds for clinical applications.

Journal

Biomechanics and Modeling in MechanobiologySpringer Journals

Published: Jun 6, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off