Simplified Ultrasonic Damage Detection in Fluid-Filled Pipes

Simplified Ultrasonic Damage Detection in Fluid-Filled Pipes The location and extent of damage in a pipe can be remotely determined from weld and internal damage reflections using a single acoustic emitter/sensor pair. The use of normalised reflections yields single numbers enabling long distance data collection techniques such as wireless hopping. The attenuation is twice as high for opposite inner and outer fluids (whether air and water, or water and air) as compared to identical inner and outer fluids. The absolute recorded signals in the water-filled pipe are attenuated by a factor two compared to the empty pipe. The axial length of detection is reduced by a half. The reduction of >90% in sensors and the longer axial detection (>10 $$\times $$ × current state-of- the-art- technology) means that permanent fixed sensor pairs for whole pipelines are on the horizon of possibility. The greatest advantage is envisioned in submersed pipelines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Nondestructive Evaluation Springer Journals

Simplified Ultrasonic Damage Detection in Fluid-Filled Pipes

Loading next page...
 
/lp/springer_journal/simplified-ultrasonic-damage-detection-in-fluid-filled-pipes-gaoISblIDp
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Structural Mechanics; Characterization and Evaluation of Materials; Vibration, Dynamical Systems, Control; Classical Mechanics
ISSN
0195-9298
eISSN
1573-4862
D.O.I.
10.1007/s10921-017-0443-3
Publisher site
See Article on Publisher Site

Abstract

The location and extent of damage in a pipe can be remotely determined from weld and internal damage reflections using a single acoustic emitter/sensor pair. The use of normalised reflections yields single numbers enabling long distance data collection techniques such as wireless hopping. The attenuation is twice as high for opposite inner and outer fluids (whether air and water, or water and air) as compared to identical inner and outer fluids. The absolute recorded signals in the water-filled pipe are attenuated by a factor two compared to the empty pipe. The axial length of detection is reduced by a half. The reduction of >90% in sensors and the longer axial detection (>10 $$\times $$ × current state-of- the-art- technology) means that permanent fixed sensor pairs for whole pipelines are on the horizon of possibility. The greatest advantage is envisioned in submersed pipelines.

Journal

Journal of Nondestructive EvaluationSpringer Journals

Published: Aug 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off