Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications

Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage... We used a simple chemical synthesis route to deposit nanorod-like cobalt oxide thin films on different substrates such as stainless steel (ss), indium tin oxide (ITO), and microscopic glass slides. The morphology of the films show that the films were uniformly spread having a nanorod-like structure with the length of the nanorods shortened on ss substrates. The electrochemical properties of the films deposited at different time intervals were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The film deposited after 20 cycles on ss gave the highest specific capacity of 67.6 mAh g−1 and volumetric capacity of 123 mAh cm−3 at a scan rate 5 mV s−1 in comparison to 62.0 mAh g−1 and 113 mAh cm−3 obtained, respectively, for its counterpart on ITO. The film electrode deposited after 20 cycles on ITO gave the best rate capability and excellent cyclability with no depreciation after 2000 charge–discharge cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Electrochemistry Springer Journals

Simple chemical route for nanorod-like cobalt oxide films for electrochemical energy storage applications

Loading next page...
1
 
/lp/springer_journal/simple-chemical-route-for-nanorod-like-cobalt-oxide-films-for-OnRrqotPUo
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Physical Chemistry; Electrochemistry; Energy Storage; Characterization and Evaluation of Materials; Analytical Chemistry; Condensed Matter Physics
ISSN
1432-8488
eISSN
1433-0768
D.O.I.
10.1007/s10008-017-3520-8
Publisher site
See Article on Publisher Site

Abstract

We used a simple chemical synthesis route to deposit nanorod-like cobalt oxide thin films on different substrates such as stainless steel (ss), indium tin oxide (ITO), and microscopic glass slides. The morphology of the films show that the films were uniformly spread having a nanorod-like structure with the length of the nanorods shortened on ss substrates. The electrochemical properties of the films deposited at different time intervals were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The film deposited after 20 cycles on ss gave the highest specific capacity of 67.6 mAh g−1 and volumetric capacity of 123 mAh cm−3 at a scan rate 5 mV s−1 in comparison to 62.0 mAh g−1 and 113 mAh cm−3 obtained, respectively, for its counterpart on ITO. The film electrode deposited after 20 cycles on ITO gave the best rate capability and excellent cyclability with no depreciation after 2000 charge–discharge cycles.

Journal

Journal of Solid State ElectrochemistrySpringer Journals

Published: Feb 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off