Simple Carrier Kinetics in Complex Membrane Transporters

Simple Carrier Kinetics in Complex Membrane Transporters The four-state simple carrier model (SCM) has been employed to describe facilitative transport of ligands across biological membranes. Two basic mechanisms have been invoked to account for carrier-mediated ligand translocation: (i) binding to a mobile carrier, and (ii) displacement determined by conformational changes of an integral protein. While translatory carriers may be accurately represented by a four-state diagram, it is unlikely that the transport process mediated by a complex membrane protein can be strictly described by the elementary SCM. The purpose of this article is to test whether facilitative transporters with a more complex kinetic design than the SCM can exhibit macroscopic kinetic properties indistinguishable from it. For this, I studied a ``general carrier model'' (GCM), and evaluated whether the relevant kinetic parameters are subject to the same basic restrictions as in the SCM. The fundamental finding is that there is a general kinetic design embodied with SCM-like properties, that can be shared by many transporters. In particular, the classical SCM is shown here to represent a particular case of the GCM. A main conclusion of this work is therefore that the finding of a macroscopic SCM-like kinetic behavior for a particular process of facilitative transport does not represent a sufficient argument in favor of a particular type of mechanism, like the typical one involving a two-conformational single-site carrier. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Simple Carrier Kinetics in Complex Membrane Transporters

Loading next page...
 
/lp/springer_journal/simple-carrier-kinetics-in-complex-membrane-transporters-jVSzPQUCO0
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900437
Publisher site
See Article on Publisher Site

Abstract

The four-state simple carrier model (SCM) has been employed to describe facilitative transport of ligands across biological membranes. Two basic mechanisms have been invoked to account for carrier-mediated ligand translocation: (i) binding to a mobile carrier, and (ii) displacement determined by conformational changes of an integral protein. While translatory carriers may be accurately represented by a four-state diagram, it is unlikely that the transport process mediated by a complex membrane protein can be strictly described by the elementary SCM. The purpose of this article is to test whether facilitative transporters with a more complex kinetic design than the SCM can exhibit macroscopic kinetic properties indistinguishable from it. For this, I studied a ``general carrier model'' (GCM), and evaluated whether the relevant kinetic parameters are subject to the same basic restrictions as in the SCM. The fundamental finding is that there is a general kinetic design embodied with SCM-like properties, that can be shared by many transporters. In particular, the classical SCM is shown here to represent a particular case of the GCM. A main conclusion of this work is therefore that the finding of a macroscopic SCM-like kinetic behavior for a particular process of facilitative transport does not represent a sufficient argument in favor of a particular type of mechanism, like the typical one involving a two-conformational single-site carrier.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off