Similarity queries: their conceptual evaluation, transformations, and processing

Similarity queries: their conceptual evaluation, transformations, and processing Many application scenarios can significantly benefit from the identification and processing of similarities in the data. Even though some work has been done to extend the semantics of some operators, for example join and selection, to be aware of data similarities, there has not been much study on the role and implementation of similarity-aware operations as first-class database operators. Furthermore, very little work has addressed the problem of evaluating and optimizing queries that combine several similarity operations. The focus of this paper is the study of similarity queries that contain one or multiple first-class similarity database operators such as Similarity Selection, Similarity Join, and Similarity Group-by. Particularly, we analyze the implementation techniques of several similarity operators, introduce a consistent and comprehensive conceptual evaluation model for similarity queries, and present a rich set of transformation rules to extend cost-based query optimization to the case of similarity queries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Similarity queries: their conceptual evaluation, transformations, and processing

Loading next page...
 
/lp/springer_journal/similarity-queries-their-conceptual-evaluation-transformations-and-k1NxNAKDjA
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0296-4
Publisher site
See Article on Publisher Site

Abstract

Many application scenarios can significantly benefit from the identification and processing of similarities in the data. Even though some work has been done to extend the semantics of some operators, for example join and selection, to be aware of data similarities, there has not been much study on the role and implementation of similarity-aware operations as first-class database operators. Furthermore, very little work has addressed the problem of evaluating and optimizing queries that combine several similarity operations. The focus of this paper is the study of similarity queries that contain one or multiple first-class similarity database operators such as Similarity Selection, Similarity Join, and Similarity Group-by. Particularly, we analyze the implementation techniques of several similarity operators, introduce a consistent and comprehensive conceptual evaluation model for similarity queries, and present a rich set of transformation rules to extend cost-based query optimization to the case of similarity queries.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off