Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901)

Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum... Silver nanoparticles (AgNPs) are increasingly used in several industrial and household products because of their antibacterial and antifungal properties. Hence, there is an inevitable risk that these chemicals may end up in aquatic biotopes and have adverse effects on the fauna. In order to assess potential health effects on aquatic organisms, this study evaluated the effects of waterborne AgNP exposure for 7 days on a set of critical stress parameters in juvenile Caspian kutum (Rutilus kutum), an economically important fish in the Caspian Sea. The applied level 11 μg/l of AgNP is high compared to reported water concentrations and corresponds to 40% of the 96 h LC50 value, initially determined to be 28 μg/l. Gill heat shock protein 70 (hsp70) mRNA expression, Na+/K+-ATPase activity and enzymatic activities of liver superoxide dismutase (SOD), glutathione peroxidase (Gpx), lactate dehyrogenase (LDH) and alkaline phosphatase (ALP), and whole-body cortisol and thyroid hormones (T3 and T4) were measured as endpoints. Gill hsp70 mRNA expression increased and gill Na+/K+-ATPase activity decreased in AgNP-exposed fish compared to controls. The specific activities of all liver enzymes decreased significantly compared to controls. Whole-body cortisol and thyroid hormones decreased compared to controls. In conclusion, the study demonstrates that AgNPs cause oxidative stress and gill osmoregulatory disruption in Caspian kutum juveniles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Monitoring and Assessment Springer Journals

Silver nanoparticles cause osmoregulatory impairment and oxidative stress in Caspian kutum (Rutilus kutum, Kamensky 1901)

Loading next page...
 
/lp/springer_journal/silver-nanoparticles-cause-osmoregulatory-impairment-and-oxidative-Lq0qza0lar
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Environment; Monitoring/Environmental Analysis; Environmental Management; Ecotoxicology; Atmospheric Protection/Air Quality Control/Air Pollution; Ecology
ISSN
0167-6369
eISSN
1573-2959
D.O.I.
10.1007/s10661-017-6156-3
Publisher site
See Article on Publisher Site

Abstract

Silver nanoparticles (AgNPs) are increasingly used in several industrial and household products because of their antibacterial and antifungal properties. Hence, there is an inevitable risk that these chemicals may end up in aquatic biotopes and have adverse effects on the fauna. In order to assess potential health effects on aquatic organisms, this study evaluated the effects of waterborne AgNP exposure for 7 days on a set of critical stress parameters in juvenile Caspian kutum (Rutilus kutum), an economically important fish in the Caspian Sea. The applied level 11 μg/l of AgNP is high compared to reported water concentrations and corresponds to 40% of the 96 h LC50 value, initially determined to be 28 μg/l. Gill heat shock protein 70 (hsp70) mRNA expression, Na+/K+-ATPase activity and enzymatic activities of liver superoxide dismutase (SOD), glutathione peroxidase (Gpx), lactate dehyrogenase (LDH) and alkaline phosphatase (ALP), and whole-body cortisol and thyroid hormones (T3 and T4) were measured as endpoints. Gill hsp70 mRNA expression increased and gill Na+/K+-ATPase activity decreased in AgNP-exposed fish compared to controls. The specific activities of all liver enzymes decreased significantly compared to controls. Whole-body cortisol and thyroid hormones decreased compared to controls. In conclusion, the study demonstrates that AgNPs cause oxidative stress and gill osmoregulatory disruption in Caspian kutum juveniles.

Journal

Environmental Monitoring and AssessmentSpringer Journals

Published: Aug 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off